A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

rs6265 single-nucleotide polymorphism is involved in levodopa-induced dyskinesia in Parkinson's disease via its regulation of the cortical thickness of the left postcentral gyrus. | LitMetric

Background: Brain-derived neurotrophic factor () gene rs6265 single-nucleotide polymorphism (SNP) is thought to be involved in neuroplasticity and influence the development of levodopa-induced dyskinesia (LID) in Parkinson's disease (PD). This study aimed to determine how the rs6265 SNP regulates cortical thickness and to investigate the association between and the pathological mechanisms of LID in PD.

Methods: This cross-sectional study recruited 75 patients with PD, including 37 patients with LID and 38 patients without LID, and 33 healthy controls. All the participants underwent T1-weighted magnetic resonance imaging (MRI) scans, clinical evaluations, and rs6265 genotyping. Two-way factorial analysis of covariance (ANCOVA) was used to explore the primary effects of disease status, rs6265 genotype, and their interactions on cortical thickness. Associations between cortical thickness in the regions of the brain affected by disease status-genotype interactions and clinical symptoms were detected using Spearman's rank-order correlation. Receiver operating characteristic (ROC) curve analysis was used to test cortical thickness measurements as an indicator of LID.

Results: The main effects of disease status were observed in the right pars orbitalis (F=4.229, P=0.017), medial orbitofrontal cortex (F=3.639, P=0.030), and left banks superior temporal sulcus (F=3.172, P=0.046). The left pars orbitalis (F=4.541, P=0.036) and lingual gyrus (F=4.307, P=0.041) were thicker in carriers of the CC genotype than in carriers of the TC/TT genotype. Interaction between disease status and genotype showed that in the LID group, carriers of the CC genotype had a thicker left postcentral gyrus (mean difference =0.103, 95% confidence interval, 0.036 to 0.107, Bonferroni-corrected P<0.005) than did carriers of the TC/TT genotype, whereas no difference was found in the non-LID and healthy control (HC) groups. In carriers of the CC genotype, the cortical thickness of the left postcentral gyrus could identify whether patients with PD had LID, with an area under the receiver operating curve (AUC) of 0.757 (P=0.033, optimal cut-off =2.102). The cortical thickness of the left postcentral gyrus was also positively correlated with the Unified Dyskinesia Rating Scale (UDysRS) score in the LID-CC subgroup (r=0.825, P=0.001).

Conclusions: The rs6265 SNP might be associated with dyskinesia symptoms in patients with PD and LID through its regulation of cortical thickness in the left postcentral gyrus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9131325PMC
http://dx.doi.org/10.21037/qims-21-1018DOI Listing

Publication Analysis

Top Keywords

cortical thickness
20
disease status
12
rs6265 single-nucleotide
8
single-nucleotide polymorphism
8
levodopa-induced dyskinesia
8
parkinson's disease
8
left postcentral
8
postcentral gyrus
8
patients lid
8
effects disease
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!