Objectives: Adipose tissue-derived mesenchymal stromal cells (ASCs) are useful in cell-based therapy. However, it is well known that diabetes mellitus (DM) alters ASCs' functionality. The majority of studies related to ASCs are developed under non-physiological oxygen conditions. Therefore, they may not reflect the full effects of DM on ASCs, . The main aim of the current study is to identify molecular pathways and underlying biological mechanisms affected by diabetes on ASCs in physiological oxygen conditions.

Materials And Methods: ASCs derived from healthy (ASCs-C) and diabetic (ASCs-D) rats were expanded under standard culture conditions (21% O) or cultured in physiological oxygen conditions (3% O) and characterized. Differential gene expressions (DEGs) of ASCs-D with respect to ASCs-C were identified and analyzed with bioinformatic tools. Protein-protein interaction (PPI) networks, from up- and down-regulated DEGs, were also constructed.

Results: The bioinformatic analysis revealed 1354 up-regulated and 859 down-regulated DEGs in ASCs-D, with 21 and 78 terms over and under-represented, respectively. Terms linked with glycosylation and ribosomes were over-represented and terms related to the activity of RNA-polymerase II and transcription regulation were under-represented. PPI network disclosed RPL11-RPS5 and KDR-VEGFA as the main interactions from up- and down-regulated DEGs, respectively.

Conclusion: These results provide valuable information about gene pathways and underlying molecular mechanisms by which diabetes disturbs ASCs biology in physiological oxygen conditions. Furthermore, they reveal, molecular targets to improve the use of ASCs in autologous transplantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124531PMC
http://dx.doi.org/10.22038/IJBMS.2022.59004.13107DOI Listing

Publication Analysis

Top Keywords

physiological oxygen
16
oxygen conditions
12
down-regulated degs
12
molecular pathways
8
adipose tissue-derived
8
tissue-derived mesenchymal
8
mesenchymal stromal
8
stromal cells
8
ascs
8
cells ascs
8

Similar Publications

Background: Cerebral autoregulation is a robust regulatory mechanism that stabilizes cerebral blood flow in response to reduced blood pressure, thereby preventing cerebral ischaemia. Scientists have long believed that cerebral autoregulation also stabilizes cerebral blood flow against increases in intracranial pressure, which is another component that determines cerebral perfusion pressure. However, this idea was inconsistent with the complex pathogenesis of normal pressure hydrocephalus, which includes components of chronic cerebral ischaemia due to mild increases in intracranial pressure.

View Article and Find Full Text PDF

Macrophages exhibit diverse phenotypes depending on environment status, which contribute to physiological and pathological processes of immunological diseases, including sepsis, asthma, multiple sclerosis and colitis. The alternative activation of macrophages is tightly regulated to avoid excessive activation and damage of tissues and organs. Certain works characterized that succinate dehydrogenase (SDH) altered function of macrophages and promoted inflammatory response in M1 macrophages via mitochondrial reactive oxygen species (ROS).

View Article and Find Full Text PDF

Reductive stress: The key pathway in metabolic disorders induced by overnutrition.

J Adv Res

January 2025

The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:

Background: The balance of redox states is crucial for maintaining physiological homeostasis. For decades, the focus has been mainly on the concept of oxidative stress, which is involved in the mechanism of almost all diseases. However, robust evidence has highlighted that reductive stress, the other side of the redox spectrum, plays a pivotal role in the development of various diseases, particularly those related to metabolism and cardiovascular health.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) serve as important signaling molecule, involved in numerous biological processes, particularly in the physiological changes associated with fruit ripening and postharvest handing. This review explores ROS key role in plant fruit ripening and postharvest quality. The mechanism of ROS production and degradation in maintaining ROS homeostasis are analyzed in detail.

View Article and Find Full Text PDF

Cardiorespiratory demands of firearms training instruction and 15m shuttle tests in British law enforcement.

PLoS One

January 2025

Division of Surgery & Interventional Science, Institute of Sport Exercise and Health, University College London, London, United Kingdom.

Objectives: Law enforcement agencies require minimum fitness standards to safeguard their officers and training staff. Firearms instructors (FI) are expected to maintain the same standards as their operational counterparts. This study aimed to quantify the daily physiological demands placed on FI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!