Reversible conversion between excited-states plays an important role in many photophysical phenomena. Using 1-(pyren-2'-yl)--carborane as a model, we studied the photoinduced reversible charge-transfer (CT) process and the thermodynamic equilibrium between the locally-excited (LE) state and CT state, by combining steady state, time-resolved, and temperature-dependent fluorescence spectroscopy, fs- and ns-transient absorption, and DFT and LR-TDDFT calculations. Our results show that the energy gaps and energy barriers between the LE, CT, and a non-emissive 'mixed' state of 1-(pyren-2'-yl)--carborane are very small, and all three excited states are accessible at room temperature. The internal-conversion and reverse internal-conversion between LE and CT states are significantly faster than the radiative decay, and the two states have the same lifetimes and are in thermodynamic equilibrium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9093154 | PMC |
http://dx.doi.org/10.1039/d1sc06867a | DOI Listing |
Data Brief
February 2025
Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Departamento de Ingeniería Agrícola, Universidad Surcolombiana, Neiva-Huila 410001, Colombia.
This work presents a comprehensive dataset of adsorption isotherms and infrared spectral data for roasted specialty coffee ( L.). The dataset includes adsorption isotherms for whole roasted beans and ground coffee at medium (850 µm) and fine (600 µm) particle sizes.
View Article and Find Full Text PDFLangmuir
January 2025
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Surface-active agents (surfactants) release potential energy as they migrate from one of two adjacent fluids onto their fluid-fluid interface, a process that profoundly impacts the system's energy and entropy householding. The continuum thermodynamics underlying such a surfactant-enriched binary-fluid system has not yet been explored comprehensively. In this article, we present a mathematical description of such a system, in terms of balance laws, equations of state, and permissible constitutive relations and interface conditions, that satisfies the first and second law of thermodynamics.
View Article and Find Full Text PDFACS Photonics
January 2025
Center for Nanophotonics, AMOLF, Science Park 104, XG Amsterdam 1098, the Netherlands.
We present a complete framework of stochastic thermodynamics for a single-mode linear optical cavity driven on resonance. We first show that the steady-state intracavity field follows the equilibrium Boltzmann distribution. The effective temperature is given by the noise variance, and the equilibration rate is the dissipation rate.
View Article and Find Full Text PDFInd Eng Chem Res
January 2025
Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, U.K.
Efficiently obtaining atomic-scale thermodynamic parameters characterizing crystallization from solution is key to developing the modeling strategies needed in the quest for digital design strategies for industrial crystallization processes. Based on the thermodynamics of crystal nucleation in confined solutions, we develop a simulation framework to efficiently estimate the solubility and surface tension of organic crystals in solution from a few unbiased molecular dynamics simulations at a reference temperature. We then show that such a result can be extended with minimal computational overhead to capture the solubility curve.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany.
Dynamically interconvertible metallo-supramolecular multicomponent assemblies, coexisting orthogonally in solution, serve as simplified mimics for complex networks found in biological systems. Building on recent advances in controlling the nonstatistical self-assembly of heteroleptic coordination cages and heteromeric completive self-sorting, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!