Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report pump-probe transient absorption measurements addressing the photocycle of the Germanium lone pair center (GLPC) point defect with an unprecedented time resolution. The GLPC is a model point defect with a simple and well-understood electronic structure, highly relevant for several applications. Therefore, a full explanation of its photocycle is fundamental to understand the relaxation mechanisms of such molecular-like systems in solid state. The experiment, carried out exciting the sample resonantly with the ultraviolet (UV) GLPC absorption band peaked at 5.1 eV, gave us the possibility to follow the defect excitation-relaxation dynamics from the femto-picosecond to the nanosecond timescale in the UV-visible range. Moreover, the transient absorption signal was studied as a function of the excitation photon energy and comparative experiments were conducted on highly- and weakly-germanium doped silica glasses. The results offer a comprehensive picture of the relaxation dynamics of GLPC and allow observing the interplay between electronic transitions localized on the defect and those related to bandgap transitions, providing a clear evidence that the role of dopant high concentration is not negligible in the earliest dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163034 | PMC |
http://dx.doi.org/10.1038/s41598-022-13156-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!