Editorial: Capturing developmental brain dynamics.

NPJ Sci Learn

Department of Clinical Developmental Psychology & Institute Learn!, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Published: June 2022

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163026PMC
http://dx.doi.org/10.1038/s41539-022-00126-xDOI Listing

Publication Analysis

Top Keywords

editorial capturing
4
capturing developmental
4
developmental brain
4
brain dynamics
4
editorial
1
developmental
1
brain
1
dynamics
1

Similar Publications

In toto biological framework: Modeling interconnectedness during human development.

Dev Cell

January 2025

Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Graduate School of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Divisions of Gastroenterology, Hepatology & Nutrition, and Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA. Electronic address:

Recent advancements in pluripotent stem cell and synthetic tissue technology have brought significant breakthroughs in studying early embryonic development, particularly within the first trimester of development in humans. However, during fetal stage development, investigating further biological events represents a major challenge, partly due to the evolving complexity and continued interaction across multiple organ systems. To bridge this gap, we propose an "in toto" biological framework that leverages a triad of technologies: synthetic tissues, intravital microscopy, and computer vision to capture in vivo cellular morphodynamics, conceptualized as single-cell choreography.

View Article and Find Full Text PDF

plecoglossicida infection induces neutrophil autophagy-driven NETosis in large yellow croaker .

Front Immunol

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China.

Neutrophil extracellular traps (NETs) are crucial for the immune defense of many organisms, serving as a potent mechanism for neutrophils to capture and eliminate extracellular pathogens. While NETosis and its antimicrobial mechanisms have been well studied in mammals, research on NETs formation in teleost fish remains limited. In this study, we used the large yellow croaker () as the study model to investigate NETosis and its role in pathogen defense.

View Article and Find Full Text PDF
Article Synopsis
  • Gliclazide is a medication for type 2 diabetes, primarily metabolized by genetic variations in the CYP2C9 and CYP2C19 enzymes.
  • A physiologically based pharmacokinetic (PBPK) model was developed to analyze how these genetic differences affect gliclazide's effects in patients.
  • The model accurately predicted drug concentration levels in the bloodstream, meeting standard evaluation criteria and potentially paving the way for personalized treatment plans based on genetic profiles.
View Article and Find Full Text PDF

Objective: Due to their consistent and individualistic patterns, palatal rugae (PR) are used in forensic dentistry as an ancillary method for personal identification. This study aimed to compare the impression of the PR obtained with the classic alginate impression and casting of the plaster model with the impression of the palate made with an intraoral scanner. Both impressions were compared with each other and with the photograph of the palatal rugae.

View Article and Find Full Text PDF

Long-term forecast for antibacterial drug consumption in Germany using ARIMA models.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Hannover Medical School, Institute of Pharmacology, D-30625, Hannover, Germany.

The increasing supply shortages of antibacterial drugs presents significant challenges to public health in Germany. This study aims to predict the future consumption of the ten most prescribed antibacterial drugs in Germany up to 2040 using ARIMA (Auto Regressive Integrated Moving Average) models, based on historical prescription data. This analysis also evaluates the plausibility of the forecasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!