BEAN: Brain Extraction and Alignment Network for 3D Fetal Neurosonography.

Neuroimage

Oxford Machine Learning in Neuroimaging laboratory, OMNI, Department of Computer Science, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom.

Published: September 2022

AI Article Synopsis

  • Brain extraction and alignment are essential for neuroimaging, especially in studying fetal brain development with 3D ultrasound (US), but there have been limited automated tools for this purpose.
  • A new convolutional neural network (CNN) called the Brain Extraction and Alignment Network (BEAN) has been developed, which effectively extracts and aligns fetal brains from unprocessed 3D US scans using two distinct processes.
  • BEAN was tested on 356 scans from 14 to 30 weeks gestation and demonstrated superior performance for both brain extraction and alignment tasks, showcasing high accuracy and consistency in identifying key brain structures.

Article Abstract

Brain extraction (masking of extra-cerebral tissues) and alignment are fundamental first steps of most neuroimage analysis pipelines. The lack of automated solutions for 3D ultrasound (US) has therefore limited its potential as a neuroimaging modality for studying fetal brain development using routinely acquired scans. In this work, we propose a convolutional neural network (CNN) that accurately and consistently aligns and extracts the fetal brain from minimally pre-processed 3D US scans. Our multi-task CNN, Brain Extraction and Alignment Network (BEAN), consists of two independent branches: 1) a fully-convolutional encoder-decoder branch for brain extraction of unaligned scans, and 2) a two-step regression-based branch for similarity alignment of the brain to a common coordinate space. BEAN was tested on 356 fetal head 3D scans spanning the gestational range of 14 to 30 weeks, significantly outperforming all current alternatives for fetal brain extraction and alignment. BEAN achieved state-of-the-art performance for both tasks, with a mean Dice Similarity Coefficient (DSC) of 0.94 for the brain extraction masks, and a mean DSC of 0.93 for the alignment of the target brain masks. The presented experimental results show that brain structures such as the thalamus, choroid plexus, cavum septum pellucidum, and Sylvian fissure, are consistently aligned throughout the dataset and remain clearly visible when the scans are averaged together. The BEAN implementation and related code can be found under www.github.com/felipemoser/kelluwen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2022.119341DOI Listing

Publication Analysis

Top Keywords

brain extraction
24
extraction alignment
12
fetal brain
12
brain
10
alignment network
8
extraction
6
alignment
6
bean
5
fetal
5
scans
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!