Ethnopharmacological Relevance: Triptolide (TP) is a major active ingredient and toxic component of Tripterygium wilfordii Hook F (TWHF), which exhibits multiple activities and remarkable hepatotoxicity, the latter of which limits its clinical application due to the risk of liver injury. Previous research has revealed the hepatotoxicity of TP resulting in liver hypersensitivity upon lipopolysaccharide (LPS) stimulation. However, existing research has not elucidated the potential immune mechanism such as Th17/Treg imbalance in TP-induced hepatic excessive immune response to exogenous LPS.

Aim Of The Study: To investigate the role of Th17/Treg imbalance in TP-induced hepatic excessive immune response to exogenous LPS.

Materials And Methods: Mice were administered with TP, LPS, neutralization antibody and small molecule inhibitor respectively. Serum transaminase level was measured to determine the severity of liver injury. Frequencies of liver Th17 and Treg cells were analyzed by flow cytometry. Serum cytokine levels were performed by ELSIA, and mRNA levels of liver cytokine were performed by qPCR. The status of neutrophil infiltration was performed by myeloperoxidase (MPO) IHC measurement. Morphological observation of liver was performed by hematoxylin and eosin (H&E) staining.

Results: Mice given a single intragastric dose of TP (500 μg/kg) developed lethal fulminant hepatitis following intraperitoneal injection of LPS (0.1 mg/kg), characterized by low survival rate, severe liver injury, high levels of inflammation and neutrophil infiltration. Hepatic Th17/Treg imbalance emerged together with liver injury in these mice. Neutralization of IL-17A attenuated the liver injury and ameliorated the neutrophil infiltration. The TP-induced alteration of hepatic Th17/Treg balance was closely related to the outcome of immune-mediated acute liver injury triggered by LPS. Pretreatment with the STAT3 inhibitor AG490 effectively restored Th17/Treg balance, significantly reducing the production of IL-17A and finally attenuating the degree of liver injury.

Conclusion: Hepatic Th17/Treg imbalance not only exacerbates TP- and LPS-induced liver injury, but also serves as an indispensable part in the mechanisms of TP-induced hepatic intolerance to exogenous endotoxin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2022.115422DOI Listing

Publication Analysis

Top Keywords

liver injury
32
th17/treg imbalance
20
liver
13
excessive immune
12
immune response
12
tp-induced hepatic
12
neutrophil infiltration
12
hepatic th17/treg
12
hepatic intolerance
8
intolerance exogenous
8

Similar Publications

The scarcity of donors has prompted the growing utilization of steatotic livers, which are susceptible to injuries following orthotopic liver transplantation (OLT). This study aims to assess the efficacy of multidrug donor preconditioning (MDDP) in alleviating injuries of steatotic grafts following rat OLT. Lean rats were subjected to a Western-style diet with high-fat (HF) and high-fructose (HFr) for 30 days to induce steatosis.

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) is a rare but significant cause of acute liver failure, often challenging to diagnose due to its clinical similarity to other liver conditions. Since most drugs are metabolized by liver enzymes, the liver is at risk for hepatotoxicity. Although DILI has a low incidence in clinical practice, it remains a critical consideration for patients on potentially hepatotoxic medications.

View Article and Find Full Text PDF

Background: Drug-induced organ toxicity is a significant health concern, with gentamicin known for its effective antibacterial properties but also severe side effects, particularly cytotoxicity in liver and kidney tissues. This current study observed the preventive role of baicalein and bergenin against hepatic and renal injuries caused by gentamicin in rats.

Methods: Thirty-two male Sprague Dawley rats were divided into four groups, namely, control, gentamicin (gentamicin 80 mg/kg/day), baicalein (gentamicin 80 mg/kg/day + baicalein 100 mg/kg/day) and bergenin (gentamicin 80 mg/kg/day + bergenin 100 mg/kg/day).

View Article and Find Full Text PDF

Obeticholic Acid Aggravates Liver Fibrosis by Activating Hepatic Farnesoid X Receptor-induced Apoptosis in Cholestatic Mice.

Chem Biol Interact

December 2024

New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Obeticholic acid (OCA) was approved for the treatment of primary biliary cholangitis (PBC) patients. However, it can cause severe drug-induced liver injury (DILI), which may put PBC patients at risk of acute-on-chronic liver failure (ACLF) and even death. Farnesoid X receptor (FXR) is considered as the target of OCA for cholestasis, but there is still a lack of research on whether hepatic and ileal FXR have different effects after OCA treatment.

View Article and Find Full Text PDF

Non-alcoholic steatohepatitis (NASH) is the most common cause of chronic liver diseases with its pathophysiological mechanism poorly understood. In this work, serological, histological, molecular biological, biochemical, and immunological methods were applied to explore the pathological significance and action of zinc finger protein 281 (ZFP281 in mouse, ZNF281 in human) and targeted strategies. We reported that ZFP281/ZNF281 abundance in hepatocytes was positively correlated with the progression of NASH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!