Effect of inoculum pretreatment on the microbial and metabolic dynamics of food waste dark fermentation.

Bioresour Technol

Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region. Electronic address:

Published: August 2022

This study systematically evaluated and compared different inoculum pretreatment methods to quickly select dark fermentative bacteria from anaerobic sludge for the bioconversion of food waste. The hydrogen (H) production rate was found to be highest for 'heat + CO' treated inoculum at 140.75 ± 2.61 mL/L/h compared to control experiments (60.27 ± 2.61 mL/L/h). At the same time, H yield was found to be highest for alkali-treated inoculum at 157.25 ± 7.62 mL/g of volatile solids (VS) added compared to control experiments (91.61 ± 1.93 mL/g VS). Analysis of organic acids suggests a Clostridial-type fermentation with acetate (0.52 to 1.60 g/L) and butyrate (1.69 to 2.42 g/L) being the major by-products. The microbial data analysis showed that Firmicutes (63.64-90.39%), Bacteroidota (1.16-21.88%), and Proteobacteria (2.09-9.93%) were dominant at the phylum level, whereas genus-level classification showed Clostridium sensu stricto 1 (6.37-42.63%), Streptococcus (1.87-28.96%), Prevotella (0.57-16.59%), and Enterococcus (0.56-14.51%) dominated under different experimental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127404DOI Listing

Publication Analysis

Top Keywords

inoculum pretreatment
8
food waste
8
compared control
8
control experiments
8
inoculum
4
pretreatment microbial
4
microbial metabolic
4
metabolic dynamics
4
dynamics food
4
waste dark
4

Similar Publications

Nitrogen removal from multi-electrolyte saline wastewater via mainstream anammox in warm climate conditions.

J Environ Manage

January 2025

Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil.

High salts concentrations in wastewater hinder its biological treatment. Recent research has investigated the inhibitory effect of salinity on the anammox process, mainly focusing on NaCl. Thus, the inhibition caused by multi-electrolytes salinity on freshwater anammox bacteria remains unclear.

View Article and Find Full Text PDF

Agro-industrial residues have transitions from being an environmental problem to being a cost-effective source of biopolymers and value-added chemicals. However, the efficient extraction of the desired products from these residues requires pretreatments. Fungal biorefinery is a fascinating approach for the biotransformation of raw materials into multiple products in a single batch.

View Article and Find Full Text PDF

Biochemical methane potential tests using water hyacinth (WH), pretreated water hyacinth (PWH), and Hydrilla verticillata (HV) as substrates using sewage media were explored. This study replaced the freshwater required to prepare the slurry for AD of organic solid waste with domestic sewage. Cow dung was used as the inoculum.

View Article and Find Full Text PDF

Saccharification and co-fermentation of lignocellulosic biomass by a cockroach-gut bacterial symbiont and yeast cocktail for bioethanol production.

BMC Biotechnol

December 2024

Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.

Background: The eco-friendly transformation of agro-industrial wastes through microbial bioconversion could address sustainability challenges in line with the United Nations' Sustainable Development Goals. The bulk of agro-industrial waste consists of lignocellulosic materials with fermentable sugars, predominantly cellulose and hemicellulose. A number of pretreatment options have been employed for material saccharification toward successful fermentation into second-generation bioethanol.

View Article and Find Full Text PDF

The present study aimed to establish the feasibility of the wastewater treatment process generated from an oleaginous fermentation plant. Treatment of spent fermentation broth (SFB) poses significant environmental challenges due to its high organic load, recalcitrant compounds, and potential toxicity. The synergistic effects of combining ozone-based advanced oxidation process (O-AOP) with biological treatment for the efficient degradation of pollutants in spent fermentation broth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!