Hazardous micropollutants (MPs) such as pharmaceutically active compounds (PhACs), pesticides and personal care products (PCPs) have emerged as a critical concern nowadays for acquiring clean and safe water resources. In the last few decades, innumerable water treatment methods involving biodegradation, adsorption and advanced oxidation process have been utilized for the removal of MPs. Of these methods, membrane technology has proven to be a promising technique for the removal of MPs due to its sustainability, high efficiency and cost-effectiveness. Herein, the aim of this article is to provide a comprehensive review regarding the MPs rejection mechanisms of reverse osmosis (RO) and nanofiltration (NF) membranes after incorporation of nanomaterials and also surface modification atop the PA layer. Size exclusion, adsorption and electrostatic charge interaction mechanisms play important roles in governing the MP removal rate. In addition, this review also discusses the state-of-the-art research on the surface modification of thin film composite (TFC) membrane and nanomaterials-incorporated thin film nanocomposite (TFN) membrane in enhancing MPs removal performance. It is hoped that this review can provide insights in modifying the physicochemical properties of NF and RO membranes to achieve better performance in water treatment process, particularly for the removal of emerging hazardous substances.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.135151DOI Listing

Publication Analysis

Top Keywords

removal emerging
8
water treatment
8
removal mps
8
surface modification
8
thin film
8
removal
6
mps
5
emerging organic
4
organic micropollutants
4
micropollutants modified-reverse
4

Similar Publications

The guidelines from the European and American Societies for Gastrointestinal Endoscopy discourage endoscopic retrieval of drug bags in body stuffers. However, recent evidence challenges this stance, demonstrating successful bag retrieval without fatal outcomes. We present two distinct cases illustrating varying outcomes of intervention.

View Article and Find Full Text PDF

The fate of intracellular and extracellular antibiotic resistance genes during ultrafiltration-ultraviolet-chlorination in a full-scale wastewater tretament plant.

J Hazard Mater

January 2025

Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia. Electronic address:

Effluent from wastewater treatment plants (WWTPs) is recognized as a significant source of antibiotic resistance genes (ARGs) in the environment. Advanced treatment processes such as ultrafiltration (UF), ultraviolet (UV) light disinfection, and chlorination have emerged as promising approaches for ARG removal. However, the efficacy of sequential disinfection processes, such as UF-UV-chlorination on intracellular (iARGs) and extracellular ARGs (eARGs), remains largely unknown.

View Article and Find Full Text PDF

Introduction: The burden of severe asthma on patients, especially on those with concomitant chronic rhinosinusitis with nasal polyps (CRSwNP), is substantial. Treatment intensification with oral corticosteroids is a common strategy for managing severe asthma exacerbations; however, prolonged exposure to systemic corticosteroids is associated with multisystem toxicity. This study aimed to quantify the association between oral corticosteroid use and annual asthma-related costs in patients with severe asthma with or without CRSwNP.

View Article and Find Full Text PDF

We model an adaptive agent-based environment using selfish algorithm agents (SA-agents) that make decisions along three choice dimensions as they play the multi-round prisoner's dilemma game. The dynamics that emerge from mutual interactions among the SA-agents exhibit two collective-level properties that mirror living systems, thus making these models suitable for societal/biological simulation. The properties are: emergent intelligence and collective agency.

View Article and Find Full Text PDF

Background: Stigma significantly impacts individuals with Parkinson's disease (PD) and their caregivers, exacerbating social isolation, psychological distress, and reducing quality of life (QoL). Although considerable research has been conducted on PD's clinical aspects, the social and emotional challenges, like stigma, remain underexplored. Addressing stigma is crucial for enhancing well-being, fostering inclusivity and improving access to care and support.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!