A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatially adaptive blind deconvolution methods for optical coherence tomography. | LitMetric

Spatially adaptive blind deconvolution methods for optical coherence tomography.

Comput Biol Med

Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China. Electronic address:

Published: August 2022

Optical coherence tomography (OCT) is a powerful noninvasive imaging technique for detecting microvascular abnormalities. Following optical imaging principles, an OCT image will be blurred in the out-of-focus domain. Digital deconvolution is a commonly used method for image deblurring. However, the accuracy of traditional digital deconvolution methods, e.g., the Richardson-Lucy method, depends on the prior knowledge of the point spread function (PSF), which varies with the imaging depth and is difficult to determine. In this paper, a spatially adaptive blind deconvolution framework is proposed for recovering clear OCT images from blurred images without a known PSF. First, a depth-dependent PSF is derived from the Gaussian beam model. Second, the blind deconvolution problem is formalized as a regularized energy minimization problem using the least squares method. Third, the clear image and imaging depth are simultaneously recovered from blurry images using an alternating optimization method. To improve the computational efficiency of the proposed method, an accelerated alternating optimization method is proposed based on the convolution theorem and Fourier transform. The proposed method is numerically implemented with various regularization terms, including total variation, Tikhonov, and l norm terms. The proposed method is used to deblur synthetic and experimental OCT images. The influence of the regularization term on the deblurring performance is discussed. The results show that the proposed method can accurately deblur OCT images. The proposed acceleration method can significantly improve the computational efficiency of blind demodulation methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.105650DOI Listing

Publication Analysis

Top Keywords

proposed method
16
blind deconvolution
12
oct images
12
method
10
spatially adaptive
8
adaptive blind
8
deconvolution methods
8
optical coherence
8
coherence tomography
8
digital deconvolution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!