A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rapid and sustained restoration of astrocytic functions by ketamine in depression model mice. | LitMetric

Rapid and sustained restoration of astrocytic functions by ketamine in depression model mice.

Biochem Biophys Res Commun

State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China. Electronic address:

Published: August 2022

Molecules with fast-acting antidepressant effects have potentials to become new antidepressants. Here we report the fast-acting (1hr) antidepressant effects of ketamine (10 mg/kg, i.p.) in chronic adreno-cortico-tropic-hormone (ACTH)-induced and chronic unpredictable mild stress (CUMS)-induced depression mouse models. These behavioral anti-depressant effects are associated with normalized expression of glutamate transporter-1(GLT-1), glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and eukaryotic elongation factor 2 phosphorylation (p-eEF2) in the prelimbic prefrontal cortex (PrL-PFC). Excitatory neurons in PrL also showed reduced ambient glutamate responses to synaptic stimulation, and reduced ambient NMDA receptor responses after ketamine injection. Interestingly, ketamine induced biochemical and electrophysiological changes still occurred with GLT-1 knockdown in PrL, suggesting that elevated GLT-1 level is not required for ketamine to exert its antidepressant effect. At the same time, ketamine did not elevate GLT-1 level in the isolated astrocytes, suggesting distinct contributions from neurons and astrocytes to ketamine-induced changes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2022.03.068DOI Listing

Publication Analysis

Top Keywords

antidepressant effects
8
reduced ambient
8
glt-1 level
8
ketamine
6
rapid sustained
4
sustained restoration
4
restoration astrocytic
4
astrocytic functions
4
functions ketamine
4
ketamine depression
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!