This study aims to investigate the immunoglobulin superfamily containing leucine-rich repeat (ISLR) expression in gastric cancer (GC) and ISLR's underlying mechanisms regulation of GC progression. Through The Cancer Genome Atlas (TCGA) cohort datasets, we analyzed the ISLR expression in GC tumor tissues and normal tissues. ISLR expression in GC tissues and cells was determined using quantitative real-time polymerase chain reaction. Cell viability, proliferation, migration, and invasion assays were performed in GC cells transfected with sh-ISLR, ISLR plasmids, or controls. TCGA results showed that ISLR expression was higher in GC tumor tissues compared to normal tissues, and its expression levels were related to lymph node metastasis, tumor size, and clinical stage. ISLR was highly expressed in tumor cells. ISLR knockdown suppressed cell viability, proliferation, migration, and invasion in HGC-27 cells, whereas ISLR overexpression led to opposite effects in AGS cells. Gene Set Enrichment Analysis showed that ISLR could activate the epithelial-mesenchymal transition (EMT) signaling pathway. Silencing of ISLR suppressed EMT in HGC-27 cells and overexpression of ISLR promoted EMT in AGS cells. ISLR was overexpressed in both GC cell lines and tumor tissues, and our study first showed that silencing of ISLR inhibited GC cell growth and metastasis by reversing EMT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276042 | PMC |
http://dx.doi.org/10.1080/21655979.2022.2079303 | DOI Listing |
J Cell Signal
January 2024
Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth 81 Research Drive, Scarborough, Maine, USA.
Pro-angiogenic paracrine/autocrine signaling impacts myocardial repair in cell-based therapies. Activin A receptor-like type 1 (, ALK1) signaling plays a pivotal role in cardiovascular development and maintenance, but its importance in human-derived therapeutic cardiac cells is not well understood. Here, we isolated a subpopulation of human highly proliferative cells (hHiPCs) from adult epicardial tissue and found that they express ALK1, a high affinity receptor for bone morphogenetic protein-9 (BMP9), which signals via SMAD1/5 to regulate paracrine/autocrine signaling and angiogenesis.
View Article and Find Full Text PDFVirus Res
November 2024
Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:
Chronic hepatitis C virus infection is a major cause of mortality due to liver cirrhosis globally. Despite the advances in recent therapeutic strategies, there is yet a high burden of HCV-related cirrhosis worldwide concerning low coverage of newly developed antiviral therapies, insufficient validity of the current diagnostic methods for cirrhosis, and incomplete understanding of the pathogenesis in this stage of liver disease. Hence we aimed to clarify the molecular events in HCV-related cirrhosis and identify a liver-specific gene signature to potentially improve diagnosis and prognosis of the disease.
View Article and Find Full Text PDFGenes Cells
October 2024
Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Identifying specific markers of adipose stem and progenitor cells (ASPCs) in vivo is crucial for understanding the biology of white adipose tissues (WAT). PDGFRα-positive perivascular stromal cells represent the best candidates for ASPCs. This cell lineage differentiates into myofibroblasts that contribute to the impairment of WAT function.
View Article and Find Full Text PDFBackground: Major depressive disorder (MDD) plays a crucial role in the occurrence of heart failure (HF). This investigation was undertaken to explore the possible mechanism of MDD's involvement in HF pathogenesis and identify candidate biomarkers for the diagnosis of MDD with HF.
Methods: GWAS data for MDD and HF were collected, and Mendelian randomization (MR) analysis was performed to investigate the causal relationship between MDD and HF.
Global Spine J
January 2025
Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People's Republic of China.
Study Design: Bioinformatics analysis of Gene Expression Omnibus (GEO).
Objective: Ossification of the ligamentum flavum (OLF) and ankylosing spondylitis (AS) represent intricate conditions marked by the gradual progression of endochondral ossification. This investigation endeavors to unveil common biomarkers associated with heterotopic ossification and explore the potential molecular regulatory mechanisms.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!