Heterogeneity among cancer cells and in the tumor microenvironment (TME) is thought to be a significant contributor to the heterogeneity of clinical therapy response observed between patients and can evolve over time. A primary example of this is multiple myeloma (MM), a generally incurable cancer where such heterogeneity contributes to the persistent evolution of drug resistance. However, there is a paucity of functional assays for studying this heterogeneity in patient samples or for assessing the influence of the patient TME on therapy response. Indeed, the population-averaged data provided by traditional drug response assays and the large number of cells required for screening remain significant hurdles to advancement. To address these hurdles, we developed a suite of accessible technologies for quantifying functional drug response to a panel of therapies in ex vivo three-dimensional culture using small quantities of a patient's own cancer and TME components. This suite includes tools for label-free single-cell identification and quantification of both cell division and death events with a standard brightfield microscope, an open-source software package for objective image analysis and feasible data management of multi-day timelapse experiments, and a new approach to fluorescent detection of cell death that is compatible with long-term imaging of primary cells. These new tools and capabilities are used to enable sensitive, objective, functional characterization of primary MM cell therapy response in the presence of TME components, laying the foundation for future studies and efforts to enable predictive assessment drug efficacy for individual patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9175638 | PMC |
http://dx.doi.org/10.1093/intbio/zyac006 | DOI Listing |
Clin Oncol (R Coll Radiol)
December 2024
Radiation Oncology Network, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia. Electronic address:
Aims: Unresectable cutaneous squamous cell cancer of the head and neck (HNcSCC) poses treatment challenges in elderly and comorbid patients. Radiation therapy (RT) is often employed for locoregional control. This study aimed to determine progression-free survival (PFS) and overall survival (OS) outcomes achieved with upfront RT in unresectable HNcSCC.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Cancer Biology & Genetics Program, Sloan Kettering Institute, New York, NY 10065.
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
UK Health Security Agency, London, United Kingdom.
Background: Due to advances in treatment, HIV is now a chronic condition with near-normal life expectancy. However, people with HIV continue to have a higher burden of mental and physical health conditions and are impacted by wider socioeconomic issues. Positive Voices is a nationally representative series of surveys of people with HIV in the United Kingdom.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Chungbuk National University College of Medicine, Cheongju, Republic of Korea.
Purpose: We aimed to identify the transcriptomic signatures of soft tissue sarcoma (STS) related to radioresistance and establish a model to predict radioresistance.
Materials And Methods: Nine STS cell lines were cultured. Adenosine triphosphate-based viability was determined 5 days after irradiation with 8 Gy of X-rays in a single fraction.
Otol Neurotol
February 2025
Department of Otolaryngology-Head and Neck Surgery.
Objective: To compare fall risk scores of hearing aids embedded with inertial measurement units (IMU-HAs) and powered by artificial intelligence (AI) algorithms with scores by trained observers.
Study Design: Prospective, double-blinded, observational study of fall risk scores between trained observers and those of IMU-HAs.
Setting: Tertiary referral center.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!