A polyrotaxane (PR) with poly(methyl methacrylate) (PMMA) as the main chain polymer was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. Because of the special mechanism of RAFT, the suprastructure of a PMMA-based PR is established by synthesizing inclusion complexes of methyl methacrylate and gamma-cyclodextrin (γCD) into the middle of the poly-N-(3-dimethylamino) propyl methacrylamide segments. The presence of threaded γCD was determined via diffusion ordered spectroscopy from the alignment of the mobility of γCD and the main chain polymer. A PMMA-based PR with 2-20% CD coverage and a molecular weight of 7K-60K g/mol of PMMA-based PR was synthesized with a targeted molecular structure by mediating the RAFT polymerization. The PMMA-based PR prepared in this study is expected to be suitable for wide applications of tough materials with good heat resistance. Moreover, the investigation of this synthetical approach opened possibilities for more variety of PR with controllable properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.0c00648 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!