Phosphate Triester Dynamic Covalent Networks.

ACS Macro Lett

Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Published: December 2020

Dynamic covalent networks are a class of polymeric materials that combine the merits of classical thermosets and thermoplastics, in terms of mechanical properties and reprocessability, in one material. Various dynamic covalent chemistries have thus been implemented in polymeric materials with recent interests shifting toward chemistries that would allow rearrangements in network topology without the aid of external catalysts. Here we introduce transesterification in phosphate triesters as a new dynamic covalent chemistry in polymeric networks. A simple one-step synthetic strategy has been utilized to synthesize polytetrahydrofuran networks with phosphate triester cross-links. The materials showed finite viscous flow at elevated temperatures via transesterification at the cross-links without externally added catalyst. This approach provides an easy method for cross-linking OH-end-functionalized polyethers and has the potential for general use with other OH-functionalized polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.0c00636DOI Listing

Publication Analysis

Top Keywords

dynamic covalent
16
phosphate triester
8
covalent networks
8
polymeric materials
8
dynamic
4
triester dynamic
4
covalent
4
networks
4
networks dynamic
4
networks class
4

Similar Publications

Amphiphilic dynamic covalent polymer vectors of siRNA.

Chem Sci

December 2024

Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France

Dynamic covalent polymers (DCPs) recently emerged as smart siRNA delivery vectors, which dynamically self-assemble through siRNA templating and depolymerize in a controlled manner. Herein, we report the dynamic combinatorial screening of cationic and amphiphilic peptide-based monomers. We provide experimental evidence, by mass spectrometry analyses, of the siRNA-templated formation of DCPs, and show that amphiphilic DCPs display superior activity in terms of siRNA complexation and delivery in cells.

View Article and Find Full Text PDF

Ring-in-Ring Assembly Facilitates the Synthesis of a [12]Cycloparaphenylene ABC-Type [3]Catenane.

Angew Chem Int Ed Engl

January 2025

Henan University, Colleg of Chemistry and Molecular Sciences, Jingmin, 475004, Kaifeng, CHINA.

Cycloparaphenylenes (CPPs) represent a significant challenge for the synthesis of mechanically interlocked architectures, because they lack heteroatoms, which precludes traditional active and passive template methods. To circumvent this problem and explore the fundamental and functional properties of CPP rotaxanes and catenanes, researches have resorted to unusual non-covalent and even to labor-intensive covalent template approaches. Herein, we report a ring-in-ring non-covalent template strategy that makes use of the surprisingly strong non-covalent inclusion of crown ethers into suitably sized CPPs.

View Article and Find Full Text PDF

Prediction of cccDNA dynamics in hepatitis B patients by a combination of serum surrogate markers.

PLoS Comput Biol

January 2025

Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.

Quantification of intrahepatic covalently closed circular DNA (cccDNA) is a key for evaluating an elimination of hepatitis B virus (HBV) in infected patients. However, quantifying cccDNA requires invasive methods such as a liver biopsy, which makes it impractical to access the dynamics of cccDNA in patients. Although HBV RNA and HBV core-related antigens (HBcrAg) have been proposed as surrogate markers for evaluating cccDNA activity, they do not necessarily estimate the amount of cccDNA.

View Article and Find Full Text PDF

Background: Neurological disorders are at epidemic levels in the world today. Various proteins are being targeted for the development of novel molecular therapeutics; however, no small-molecule inhibitors have been discovered. Recent studies suggest that there are few molecules in clinical trials for various secretase (α, β, and γ), caspase, and calpain inhibitors.

View Article and Find Full Text PDF

The packing of organic molecular crystals is often dominated by weak non-covalent interactions, making their rearrangement under external stimuli challenging to understand. We investigate a pressure-induced single-crystal-to-single-crystal (SCSC) transformation between two polymorphs of 2,4,5-triiodo-1-imidazole using machine learning potentials. This process involves the rearrangement of halogen and hydrogen bonds combined with proton transfer within a complex solid-state system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!