Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Abstract: Outbreaks of enteric pathogens linked to wheat flour have led the wheat milling industry to seek solutions addressing this food safety concern. Chlorinated water at 400 to 700 ppm has been used in the flour milling industry as a tempering aid to control growth of yeast and mold in tempering bins. However, the effectiveness of chlorinated water for inactivating enteric pathogens on wheat kernels was unknown. Five strains of Shiga toxin-producing Escherichia coli and two strains of Salmonella were inoculated onto hard red spring wheat at 7 log CFU/g and stored at room temperature for 1 month. Inoculated wheat was tempered with four concentrations (0, 400, 800, and 1,200 ppm) of chlorinated water (pH 6.5). The reduction due to chlorine was determined by calculating change in microbial loads at each chlorine level by using the response at 0 ppm as a reference. Uninoculated wheat tempered with chlorinated water was used to measure flour quality parameters. Changes in pathogen population over 18 h ranged from -2.35 to -0.30 log CFU/g with 800 ppm of chlorinated water and were not significantly different from changes at 400 and 1,200 ppm. Significant (P < 0.05) differences in the extent of reduction were observed among strains. However, the effect of chlorinated water at reducing native microbes on wheat kernels was minimal, with an average reduction of 0.39 log CFU/g for all concentrations. No significant (P > 0.05) changes occurred in flour quality and gluten functionality or during bread making for grains tempered at 400 and 800 ppm of chlorinated water. There were small but significant (P < 0.05) changes in flour protein content, final viscosity, and water absorption when tempered with 1,200 ppm of chlorinated water. The data showed that the level of chlorinated water currently used in industry for tempering could reduce enteric pathogen numbers by 1.22 log CFU/g for Shiga toxin-producing Escherichia coli and 2.29 log CFU/g for Salmonella, with no significant effects on flour quality and gluten functionality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/JFP-22-076 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!