A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Systematic Approach toward Accurate and Efficient DNA Sequencing via Nanoconfinement. | LitMetric

Systematic Approach toward Accurate and Efficient DNA Sequencing via Nanoconfinement.

ACS Macro Lett

Robert Bosch LLC, 384 Santa Trinita Avenue, Sunnyvale, California 94085, United States.

Published: August 2020

Coarse-grained modeling tools are employed to simulate the mechanics of DNA loading within a nanoscale confinement and predict semiflexible polymer conformations within the confinement, providing design recommendations for DNA-sequencing devices. A workflow is developed to quantify competing requirements of efficiency and accuracy and extract metrics that guide design optimization. The mean first-passage time for DNA loading is calculated as a function of the nanochannel geometry and the applied electric field. We analyze the interplay between the free energy of confinement and the electric potential energy in achieving high-throughput, base-pair detection. The single-read probability is investigated as informative metrics for sequencing accuracy and for sensing-strategy design. High cost, low throughput, and low accuracy have so far limited the adoption of nanochannel analysis and other long-read technologies. Our work directly addresses these limitations with a systematic approach that is scalable to long molecules and complex geometries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.0c00423DOI Listing

Publication Analysis

Top Keywords

systematic approach
8
dna loading
8
approach accurate
4
accurate efficient
4
efficient dna
4
dna sequencing
4
sequencing nanoconfinement
4
nanoconfinement coarse-grained
4
coarse-grained modeling
4
modeling tools
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!