Microbial cell factories reinvigorate current industries by producing complex fine chemicals at low costs. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is the main reducing power to drive the biosynthetic pathways in microorganisms. However, insufficient intrinsic NADPH limits the productivity of microorganisms. Here, we report that supplying microorganisms with long-lived electrons from persistent phosphor mesoporous Al O (meso-Al O ) can elevate the NADPH level to facilitate efficient fine chemical production. The defects in meso-Al O were demonstrated to be highly efficient in prolonging electrons' lifetime. The long-lived electrons in meso-Al O can pass the material-microorganism interface and power the biosynthetic pathways of E. coli to produce jet fuel farnesene. This work represents a reliable strategy to design photo-biosynthesis systems to improve the productivity of microorganisms with solar energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202207132 | DOI Listing |
Resveratrol (RES), a natural polyphenolic compound, has garnered significant attention for its therapeutic potential in various pathological conditions. This review explores how RES modulates mitophagy-the selective autophagic degradation of mitochondria essential for maintaining cellular homeostasis. RES promotes the initiation and execution of mitophagy by enhancing PINK1/Parkin-mediated mitochondrial clearance, reducing reactive oxygen species production, and mitigating apoptosis, thereby preserving mitochondrial integrity.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Physiopathology in Aging Laboratory (LIM-22), University of São Paulo Medical School, São Paulo, São Paulo, Brazil.
Background: Understanding the molecular mechanisms underlying selective neuronal vulnerability is crucial for developing effective treatments for Alzheimer's disease (AD). Our group has shown that RORB/CDH9-positive excitatory neurons in the entorhinal cortex (EC) display selective vulnerability as early as Braak stage (BB) 2. However, not all RORB/CDH9-positive neurons are vulnerable.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
Enterobacter asburiae (E. asburiae) is a gram-negative rod-shaped bacterium which has emerging significance as an opportunistic pathogen having high virulence pattern and drug resistant properties. In this study, we present the detailed analysis of the whole genome sequence of a multidrug-resistant (MDR) E.
View Article and Find Full Text PDFBioresour Technol
December 2024
Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel. Electronic address:
This study explored a sustainable alternative to the Haber-Bosch process by enhancing production of nitrogen-rich polymer cyanophycin (CGP) in the diazotrophic cyanobacterium Nostoc sp. PCC7120. Applying UV-mutagenesis followed by canavanine selection, we isolate an initial mutant with enhanced CGP accumulation.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States.
Microbial polyketides represent a structurally diverse class of secondary metabolites with medicinally relevant properties. Aromatic polyketides are produced by type II polyketide synthase (PKS) systems, each minimally composed of a ketosynthase-chain length factor (KS-CLF) and a phosphopantetheinylated acyl carrier protein (-ACP). Although type II PKSs are found throughout the bacterial kingdom, and despite their importance to strategic bioengineering, type II PKSs have not been well-studied .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!