On the rate of phytoplankton respiration in the light.

Plant Physiol

Department of Earth and Environmental Sciences, Columbia University, Palisades, New York 10964, USA.

Published: August 2022

The rate of algal and cyanobacterial respiration in the light is an important ecophysiological term that remains to be completely characterized and quantified. To address this issue, we exploited process-specific decarboxylation rates from flux balance analysis and isotopically nonstationary metabolic flux analysis. Our study, based on published data, suggested that decarboxylation is about 22% of net CO2 assimilation when the tricarboxylic acid cycle is completely open (characterized by the commitment of alpha ketoglutarate to amino acid synthesis and very low rates of succinate formation). This estimate was supported by calculating the decarboxylation rates required to synthesize the major components of biomass (proteins, lipids, and carbohydrates) at their typical abundance. Of the 22 CO2 molecules produced by decarboxylation (normalized to net assimilation = 100), approximately 13 were from pyruvate and 3 were from isocitrate. The remaining six units of decarboxylation were in the amino acid synthesis pathways outside the tricarboxylic acid cycle. A small additional flux came from photorespiration, decarboxylations of six phosphogluconate in the oxidative pentose phosphate pathway, and decarboxylations in the syntheses of lower-abundance compounds, including pigments and ribonucleic acids. This general approach accounted for the high decarboxylation rates in algae and cyanobacteria compared to terrestrial plants. It prompts a simple speculation for the origin of the Kok effect and helps constrain the photoautotrophic respiration rate, in the light, in the euphotic zone of the ocean and lakes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434318PMC
http://dx.doi.org/10.1093/plphys/kiac254DOI Listing

Publication Analysis

Top Keywords

decarboxylation rates
12
respiration light
8
tricarboxylic acid
8
acid cycle
8
amino acid
8
acid synthesis
8
decarboxylation
6
rate phytoplankton
4
phytoplankton respiration
4
light rate
4

Similar Publications

RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (RUBISCO) is the most abundant enzyme and CO2 bio-sequestration system on Earth. Its in vivo activity is usually determined by 14CO2 incorporation into 3-phosphoglycerate (3PGA). However, the radiometric analysis of 3PGA does not distinguish carbon positions.

View Article and Find Full Text PDF

Sphagnum-dominated bogs are climatically impactful systems that exhibit two puzzling characteristics: CO:CH ratios are greater than those predicted by electron balance models and C decomposition rates are enigmatically slow. We hypothesized that Maillard reactions partially explain both phenomena by increasing apparent CO production via eliminative decarboxylation and sequestering bioavailable nitrogen (N). We tested this hypothesis using incubations of sterilized Maillard reactants, and live and sterilized bog peat.

View Article and Find Full Text PDF

Background And Aim: The European pilchard () is an important fish species for the Moroccan economy in terms of production and export. Biogenic amine histamine is a metabolite produced in the flesh of some fish species after death due to the decarboxylation of free histidine by histaminogenic bacteria. Failure to control the histamine risk in European pilchard may lead to public health and socioeconomic issues.

View Article and Find Full Text PDF

Roles of direct and indirect photodegradation in the photochemical fates of three 3rd generation fluoroquinolones.

J Hazard Mater

December 2024

School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong. Electronic address:

Article Synopsis
  • Fluoroquinolones (FQs), specifically moxifloxacin (MOX), gatifloxacin (GAT), and sparfloxacin (SPAR), are common antibiotics found in water, but their breakdown and potential toxicity are not fully understood.
  • *The study examined how these FQs degrade when exposed to light, finding that their degradation rates vary with pH levels and their chemical forms, with MOX showing the fastest breakdown.
  • *The breakdown products of these antibiotics may be ecotoxic, indicating that while photodegradation helps remove FQs from water, it could also generate harmful substances for aquatic life.
View Article and Find Full Text PDF

C photosynthesis can be complemented with a C carbon concentrating mechanism (CCM) to minimize photorespiratory losses. C photosynthesis is often more efficient than C under steady-state conditions. However, the C CCM depends on inter-cellular metabolite concentration gradients, which must increase following increases in light intensity and could decrease rates of C photosynthesis under fluctuating light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!