Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A straightforward synthetic protocol leading to carbene-metal-amido (CMA) complexes (metal=Au, Cu) using a mild base and an environmentally desirable solvent (EtOH) has been explored, with a focus on complexes bearing backbone-substituted N-heterocyclic carbene (NHC) ligands, including BIAN-NHCs (BIAN=bis(imino)acenaphthene). The novel CMAs were structurally characterized, and gold-based CMAs bearing diverse NHCs were screened as simple, Brønsted-basic precatalysts. The readily accessible complexes display high catalytic activity in the intermolecular and intramolecular hydrocarboxylation of internal alkynes and alkynoic acids respectively, while the screening reveals the ancillary ligand effect of NHCs in these catalytic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202201224 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!