Enhanced Light Absorption and Radiative Forcing by Black Carbon Agglomerates.

Environ Sci Technol

Particle Technology Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, CH-8092 Zürich, Switzerland.

Published: June 2022

The climate models of the Intergovernmental Panel on Climate Change list black carbon (BC) as an important contributor to global warming based on its radiative forcing () impact. Examining closely these models, it becomes apparent that they might underpredict significantly the direct for BC, largely due to their assumed spherical BC morphology. Specifically, the light absorption and direct of BC agglomerates are enhanced by light scattering between their constituent primary particles as determined by the Rayleigh-Debye-Gans theory interfaced with discrete dipole approximation and recent relations for the refractive index and lensing effect. The light absorption of BC is enhanced by about 20% by the multiple light scattering between BC primary particles regardless of the compactness of their agglomerates. The resulting light absorption agrees very well with the observed absorption aerosol optical depth of BC. ECHAM-HAM simulations accounting for the realistic BC morphology and its coatings reveal high direct = 3-5 W/m in East, South Asia, sub-Sahara, western Africa, and the Arabian peninsula. These results are in agreement with satellite and AERONET observations of and indicate a regional climate warming contribution by 0.75-1.25 °C, solely due to BC emissions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228049PMC
http://dx.doi.org/10.1021/acs.est.2c00428DOI Listing

Publication Analysis

Top Keywords

light absorption
16
enhanced light
8
radiative forcing
8
black carbon
8
light scattering
8
primary particles
8
absorption
5
light
5
absorption radiative
4
forcing black
4

Similar Publications

Edible coating (EC) can reduce excessive oil absorption in deep-fat fried food products. Ultrasound is an efficient pretreatment to preserve the quality characteristics of fried samples. The impact of guar gum based EC and sonication on the quality parameters of fried zucchini slices was investigated.

View Article and Find Full Text PDF

Solar-Active Carbon Nitride Film Integrated by Free Radical Copolymerization for Photocatalytic Indoor Air Purification.

Small

January 2025

Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan, 44610, Republic of Korea.

The current lack of stable, scalable, and efficient coating technology dramatically limits the exploitation of solar-driven graphitic carbon nitride (CN) photocatalysts. Herein, a unique, efficient, and scalable method is reported to immobilize CN powder on various substrates ranging from Fluorine tin oxide (FTO), glass, Plexiglas, Al foil, Ti foil, and Granite stone, to even wood. The film shows an outstanding thickness of 212 µm, which is the highest value ever reported.

View Article and Find Full Text PDF

Photoinduced formation of a platina-α-lactone - a carbon dioxide complex of platinum. Insights from femtosecond mid-infrared spectroscopy.

Phys Chem Chem Phys

January 2025

Abteilung für Molekulare Physikalische Chemie, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstraße 12, 53115 Bonn, Germany.

The binding of carbon dioxide to a transition metal is a complex phenomenon that involves a major redistribution of electron density between the metal center and the triatomic ligand. The chemical reduction of the ligand reveals itself unambiguously by an angular distortion of the CO-molecule as a result of the occupation of an anti-bonding π-orbital and a shift of its antisymmetric stretching vibration, ν, to lower wavenumbers. Here, we generate a carbon dioxide complex of the heavier group-10 metal, platinum, by ultrafast electronic excitation and cleavage of CO from the photolabile oxalate precursor, oxaliplatin, and monitored the ensuing primary dynamics with ultrafast mid-infrared spectroscopy.

View Article and Find Full Text PDF

Robust dioxin-linked metallophthalocyanine tbo topology covalent organic frameworks and their photocatalytic properties.

Natl Sci Rev

January 2025

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Constructing 3D functional covalent organic frameworks (COFs) with both robust linkage and planar macrocycle building blocks still remains a challenge due to the difficulty in adjusting both the crystallinity and the dominant 2D structures. In addition, it is also challenging to selectively convert inert C(sp)-H bonds into value-added chemicals. Herein, robust 3D COFs, USTB-28-M (M=Co, Ni, Cu), have been polymerized from the nucleophilic aromatic substitution reaction of -symmetric 2,3,6,7,14,15-hexahydroxyltriptycene with -symmetric hexadecafluorophthalocyanine (MPcF) under solvothermal conditions.

View Article and Find Full Text PDF

The field of chiral nanoparticles is rapidly expanding, yet measuring the chirality of single nano-objects remains a challenging endeavor. Here, we report a technique to detect chiro-optical effects in single plasmonic nanoparticles by means of phase-sensitive polarization-resolved four-wave mixing interferometric microscopy. Beyond conventional circular dichroism, the method is sensitive to the particle polarizability, in amplitude and phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!