The inadequate hole injection limits the efficiency and lifetime of the blue quantum dot light-emitting diodes (QLEDs), which severely hampers their commercial applications. Here a new discotic molecule of 3,6,10,11-tetrakis(pentyloxy)triphenylene-2,7-diyl bis(2,2-dimethylpropanoate) (T5DP-2,7) is introduced, in which the hole transport channels with superior hole mobility (2.6 × 10 cm V s ) is formed by stacking. The composite hole transport material (HTM) is prepared by blending T5DP-2,7 with the cross-linked 4,4'- bis(3-vinyl-9H-carbazol-9-yl)-1,1'biphenyl (CBP-V) which shows the deep highest occupied molecular orbital energy level. The increased hole mobility of the target composite HTM from 10 to 10 cm V s as well as the stepwise energy levels facilitates the hole transport, which would be beneficial for more balanced carrier injection. This composite hole transport layer (HTL) has improved the deep-blue-emission performances of Commission International de I'Eclairage of (0.14, 0.04), luminance of 44080 cd m , and external quantum efficiency of 18.59%. Furthermore, when L is 100 cd m , the device lifetime T is extended from 139 to 502 h. The state-of-the-art performance shows the successful promotion of the high-efficiency for deep blue QLEDs, and indicates that the optimizing HTL by discotic molecule stacking can serve as an excellent alternative for the development of HTL in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9376750PMC
http://dx.doi.org/10.1002/advs.202200450DOI Listing

Publication Analysis

Top Keywords

hole transport
24
hole
9
transport channels
8
transport layer
8
deep blue
8
blue qleds
8
discotic molecule
8
hole mobility
8
composite hole
8
transport
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!