Biocatalytic 3D Actuation in Liquid Crystal Elastomers via Enzyme Patterning.

ACS Appl Mater Interfaces

Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States.

Published: June 2022

Liquid crystal elastomers (LCEs) are stimuli-responsive materials that undergo large shape transformations after undergoing an order-disorder transition. While shape reconfigurations in LCEs are predominantly triggered by heat, there is a considerable interest in developing highly specific triggers that work at room temperature. Herein, we report the fabrication of biocatalytic LCEs that respond to the presence of urea by covalently immobilizing urease within chemically responsive LCE networks. The hydrogen-bonded LCEs developed in this work exhibited contractile strains of up to 36% upon exposure to a base. Notably, the generation of ammonia by immobilized urease triggered a disruption in the supramolecular network and a large reduction of liquid crystalline order in the films when the LCEs were exposed to urea. This reduction in order was macroscopically translated into a strain response that could be modulated by changing the concentration of urea or exposure time to the substrate. Local control of the mechanical response of the LCE was realized by spatially patterning the enzyme on the surface of the films. Subsequent exposure of enzymatically patterned LCE to urea-triggered 3D shape transformations into a curl, arch, or accordion-like structure, depending on the motif patterned on the film surface. Furthermore, we showed that the presence of salt was critical to prevent bridging of the network by the presence of ammonium ions, thereby enabling such macroscopic 3D shape changes. The large actuation potential of LCEs and the ability to translate the biocatalytic activity of enzymes to macroscopic 3D shape transformations could enable use in applications ranging from cell culture, medicine, or antifouling.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c05802DOI Listing

Publication Analysis

Top Keywords

shape transformations
12
liquid crystal
8
crystal elastomers
8
macroscopic shape
8
lces
6
shape
5
biocatalytic actuation
4
actuation liquid
4
elastomers enzyme
4
enzyme patterning
4

Similar Publications

Aging women in Russia: Between sexless and sexy oldies.

J Women Aging

January 2025

Department of Sociology, European University at St. Petersburg, St Petersburg, Russia.

Women's sexuality as a dimension of embodied identity is shaped and constrained by social norms of gender and age and negotiated by women in complex ways. Discourses of hegemonic bodily normativity ascribe a sexless subjectivity to Russian women in their post-reproductive years, contributing to their social exclusion. At the same time, in modern Russian society a neoliberal concept of "successful active aging" is gradually changing understandings of aging, making later-life sexuality more visible and legitimate.

View Article and Find Full Text PDF

Introduction: Zinc plays a crucial role in glucose metabolism. The association between serum zinc and insulin resistance has recently been investigated as well, but the findings are inconsistent. The triglyceride-glucose index (TyG) is frequently utilized in epidemiological research to assess insulin resistance.

View Article and Find Full Text PDF

Rural-urban transformation shapes oasis agriculture in Morocco's High Atlas Mountains.

Sci Rep

January 2025

Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics (OPATS), University of Kassel, Steinstrasse 19, 37213, Witzenhausen, Germany.

Traditional agricultural activities and rural livelihoods in Morocco's High Atlas Mountains are rapidly changing. This is triggered by increasing rural-urban interactions and new livelihood opportunities in cities. A typical example is the oasis of Tizi N'Oucheg in the country's High Atlas Mountains, which over centuries was largely self-sufficient in food grain and livestock production.

View Article and Find Full Text PDF

Through biochemical transformation of host-derived bile acids (BAs), gut bacteria mediate host-microbe crosstalk and sit at the interface of nutrition, the microbiome, and disease. BAs play a crucial role in human health by facilitating the absorption of dietary lipophilic nutrients, interacting with hormone receptors to regulate host physiology, and shaping gut microbiota composition through antimicrobial activity. Bile acid deconjugation by bacterial bile salt hydrolase (BSH) has long been recognized as the first necessary BA modification required before further transformations can occur.

View Article and Find Full Text PDF

Recently, researchers have used silver nanoparticles (AgNPs) coupled with humic acid (HA) as antimicrobial agents. Herein, AgNPs were prepared and coupled with humic acid for their antimicrobial activities. The as-prepared AgNPs coupled with humic acid (HA) were characterized by an atomic force microscope (AFM), X-ray powder diffraction (XRD), zeta potential, zeta sizer, Fourier-transform infrared (FT-IR) spectroscopy, and UV-VIS spectrophotometer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!