Tumor immunotherapy is only effective in a fraction of patients due to a low response rate and severe side effects, and these challenges of immunotherapy in clinics can be addressed through induction of immunogenic cell death (ICD). ICD is elicited from many antitumor therapies to release danger associated molecular patterns (DAMPs) and tumor-associated antigens to facilitate maturation of dendritic cells (DCs) and infiltration of cytotoxic T lymphocytes (CTLs). The process can reverse the tumor immunosuppressive microenvironment to improve the sensitivity of immunotherapy. Nanostructure-based drug delivery systems (NDDSs) are explored to induce ICD by incorporating therapeutic molecules for chemotherapy, photosensitizers (PSs) for photodynamic therapy (PDT), photothermal conversion agents for photothermal therapy (PTT), and radiosensitizers for radiotherapy (RT). These NDDSs can release loaded agents at a right dose in the right place at the right time, resulting in greater effectiveness and lower toxicity. Immunotherapeutic agents can also be combined with these NDDSs to achieve the synergic antitumor effect in a multi-modality therapeutic approach. In this review, NDDSs are harnessed to load multiple agents to induce ICD by chemotherapy, PDT, PTT, and RT in combination of immunotherapy to promote the therapeutic effect and reduce side effects associated with cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353475 | PMC |
http://dx.doi.org/10.1002/advs.202201734 | DOI Listing |
BMC Infect Dis
January 2025
Department of Tuberculosis Diseases, The Sixth People's Hospital of Dongguan, Dongguan, GuangDong, China.
Background: Exosome is a small extracellular vesicle with a diameter of 30 to 150 nm that is secreted by cells. Mtb and other bacteria can also secrete extracellular vesicles, which carry characteristics and information about the pathogen. Here, we compare the concentration of exosomes and the Mtb antigen in exosomes of tuberculosis patients aiming to evaluate whether exosomes can be used as diagnostic markers of tuberculosis at different stages.
View Article and Find Full Text PDFNat Metab
January 2025
CECAD Excellence Center, University of Cologne, Cologne, Germany.
Dysfunctions in autophagy, a cellular mechanism for breaking down components within lysosomes, often lead to neurodegeneration. The specific mechanisms underlying neuronal vulnerability due to autophagy dysfunction remain elusive. Here we show that autophagy contributes to cerebellar Purkinje cell (PC) survival by safeguarding their glycolytic activity.
View Article and Find Full Text PDFLeukemia
January 2025
Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria.
Expression of CD2, CD25 and/or CD30 in extracutaneous mast cells (MC) is a minor diagnostic criterion for systemic mastocytosis (SM) in the classification of the World Health Organization and International Consensus Classification. So far, it remains unknown whether expression of these antigens on MC is of prognostic significance in SM. We performed a retrospective multi-center study of patients with SM using the data set of the registry of the European Competence Network on Mastocytosis, including 5034 patients with various MC disorders.
View Article and Find Full Text PDFNat Microbiol
January 2025
State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Generating effective live vaccines from intact viruses remains challenging owing to considerations of safety and immunogenicity. Approaches that can be applied in a systematic manner are needed. Here we created a library of live attenuated influenza vaccines by using diverse cellular E3 ubiquitin ligases to generate proteolysis-targeting (PROTAR) influenza A viruses.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
Synthetic circuits that regulate protein secretion in human cells could support cell-based therapies by enabling control over local environments. Although protein-level circuits enable such potential clinical applications, featuring orthogonality and compactness, their non-human origin poses a potential immunogenic risk. In this study, we developed Humanized Drug Induced Regulation of Engineered CyTokines (hDIRECT) as a platform to control cytokine activity exclusively using human-derived proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!