Selective kappa opioid receptor (KOR) agonists are promising antipruritic agents and analgesics. However, clinical development of KOR agonists has been limited by side effects, including psychotomimetic effects, dysphoria, and sedation, except for nalfurafine, and recently. CR845 (difelikefalin). Activation of KOR elicits G protein- and β-arrestin-mediated signaling. KOR-induced analgesic and antipruritic effects are mediated by G protein signaling. However, different results have been reported as to whether conditioned place aversion (CPA) induced by KOR agonists is mediated by β-arrestin signaling. In this study, we examined in male mice if there was a connection between agonist-promoted CPA and KOR phosphorylation and internalization, proxies for β-arrestin recruitment using four KOR agonists. Herein, we demonstrated that at doses producing maximal effective analgesic and antiscratch effects, U50,488H, MOM-SalB, and 42B, but not nalfurafine, promoted KOR phosphorylation at T363 and S369 in mouse brains, as detected by immunoblotting with phospho-KOR-specific antibodies. In addition, at doses producing maximal effective analgesic and antiscratch effects, U50,488H, MOM-SalB, and 42B, but not nalfurafine, caused KOR internalization in the ventral tegmental area of a mutant mouse line expressing a fusion protein of KOR conjugated at the C-terminus with tdTomato (KtdT). We have reported previously that the KOR agonists U50,488H and methoxymethyl salvinorin B (MOM-SalB) cause CPA, whereas nalfurafine and 42B do not, at doses effective for analgesic and antiscratch effects. Taken together, these data reveal a lack of connection between agonist-promoted KOR-mediated CPA with agonist-induced KOR phosphorylation and internalization in male mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149264PMC
http://dx.doi.org/10.3389/fphar.2022.835809DOI Listing

Publication Analysis

Top Keywords

kor agonists
20
phosphorylation internalization
12
kor phosphorylation
12
effective analgesic
12
analgesic antiscratch
12
antiscratch effects
12
kor
11
kappa opioid
8
opioid receptor
8
mouse brains
8

Similar Publications

Molecular mechanisms of inverse agonism via κ-opioid receptor-G protein complexes.

Nat Chem Biol

January 2025

The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.

Opioid receptors, a subfamily of G protein-coupled receptors (GPCRs), are key therapeutic targets. In the canonical GPCR activation model, agonist binding is required for receptor-G protein complex formation, while antagonists prevent G protein coupling. However, many GPCRs exhibit basal activity, allowing G protein association without an agonist.

View Article and Find Full Text PDF

The endogenous dynorphin/kappa opioid receptor (KOR) system in the brain mediates the dysphoric effects of stress, and KOR antagonists may have therapeutic potential for the treatment of drug addiction, depression, and psychosis. One class of KOR antagonists, the long-acting norBNI-like antagonists, have been suggested to act by causing KOR inactivation through a cJun-kinase mechanism rather than by competitive inhibition. In this study, we screened for other opioid ligands that might produce norBNI-like KOR inactivation and found that nalfurafine (a G-biased KOR agonist) and nalmefene (a KOR partial agonist) also produce long-lasting KOR inactivation.

View Article and Find Full Text PDF

GPR88 impairs the signaling of kappa opioid receptors in a heterologous system and in primary striatal neurons.

Neuropharmacology

March 2025

Network Center for Biomedical Research in Neurodegenerative Diseases. CiberNed., Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Molecular Neurobiology Laboratory, Dept. Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain; School of Chemistry, Universitat de Barcelona, Barcelona, Spain. Electronic address:

Article Synopsis
  • GPR88 is an orphan G protein-coupled receptor primarily found in the striatum, and its function is not well understood despite changes in its expression seen in Parkinson's disease models.
  • GPR88 was found to interact with the kappa-opioid receptor (KOR), and this interaction inhibits KOR-mediated signaling, as evidenced by experiments showing that GPR88 can modulate effects of KOR agonists in both cultured cells and primary striatal neurons.
  • The GPR88-KOR complexes were more common in specific neurons related to dopamine pathways, suggesting that understanding their relationship could have implications for conditions like neuropathic pain, Parkinson's disease, and neuropsychiatric disorders.
View Article and Find Full Text PDF
Article Synopsis
  • Targeted drug delivery to specific brain areas is difficult due to the complex differences in neuron types and functions.
  • A new miniaturized implantable system allows for precise drug administration, enabling adjustments to therapies in real-time.
  • Activating kappa opioid receptors in a specific brain region can create positive or negative responses, highlighting the importance of accuracy in drug delivery for potential therapies.
View Article and Find Full Text PDF

Preclinical evaluation of abuse potential of the peripherally-restricted kappa opioid receptor agonist HSK21542.

Regul Toxicol Pharmacol

December 2024

Saifu Laboratories Co., Ltd., Beijing, China; SAFE Medical Technology Co., Ltd., Hebei, China. Electronic address:

Article Synopsis
  • HSK21542 is a kappa opioid receptor (KOR) agonist designed for pain relief and has been assessed for its potential for abuse prior to approval.
  • The preclinical studies involved various tests in rats, including self-administration, drug discrimination, conditioned place preference, and withdrawal assessments, to evaluate its reinforcing effects and dependence potential.
  • Results indicated that HSK21542 showed no behavioral signs of abuse or dependence, suggesting it has a low potential for abuse in humans.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!