Flavonoids may modulate the bone formation process. Among flavonoids, fisetin is known to counteract tumor growth, osteoarthritis, and rheumatoid arthritis. In addition, fisetin prevents inflammation-induced bone loss. In order to evaluate its favorable use in osteogenesis, we assayed fisetin supplementation in both and models and gathered information on nanoparticle-mediated delivery of fisetin and in a microfluidic system. Real-time RT-PCR, Western blotting, and nanoparticle synthesis were performed to evaluate the effects of fisetin , in the zebrafish model, and in samples. Our results demonstrated that fisetin at 2.5 µM concentration promotes bone formation and mineralization in the zebrafish model. In addition, we found that fisetin stimulates osteoblast maturation in cell cultures obtained from cleidocranial dysplasia patients. Remarkably, PLGA nanoparticles increased fisetin stability and, consequently, its stimulating effects on RUNX2 and its downstream gene SP7 expression. Therefore, our findings demonstrated the positive effects of fisetin on osteogenesis and suggest that patients affected by skeletal diseases, both of genetic and metabolic origins, may actually benefit from fisetin supplementation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149166PMC
http://dx.doi.org/10.3389/fphar.2022.890693DOI Listing

Publication Analysis

Top Keywords

fisetin
11
bone formation
8
addition fisetin
8
fisetin supplementation
8
effects fisetin
8
zebrafish model
8
fisetin integrated
4
integrated approach
4
approach identify
4
identify strategy
4

Similar Publications

Previously we discovered that among 15 DNA-binding plant secondary metabolites (PSMs) possessing anticancer activity, 11 compounds cause depletion of the chromatin-bound linker histones H1.2 and/or H1.4.

View Article and Find Full Text PDF

Fisetin Alleviates d-Galactose-Induced Senescence in C2C12 Myoblasts: Metabolic and Gene Regulatory Mechanisms.

J Proteome Res

January 2025

Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Skeletal muscle aging poses a major threat to the health and quality of life of elderly individuals. Fisetin, a natural polyphenolic compound, exhibits various biological activities; however, its role in preventing skeletal muscle cell aging is still unclear. This study aimed to elucidate the effects of fisetin on skeletal muscle aging using a d-galactose-induced C2C12 myoblast senescence model.

View Article and Find Full Text PDF

The Effects of Novel Co-Amorphous Naringenin and Fisetin Compounds on a Diet-Induced Obesity Murine Model.

Nutrients

December 2024

Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México 14080, Mexico.

Background/objective: In recent studies, it has been shown that dietary bioactive compounds can produce health benefits; however, it is not known whether an improvement in solubility can enhance their biological effects. Thus, the aim of this work was to study whether co-amorphous (CoA) naringenin or fisetin with enhanced solubility modify glucose and lipid metabolism, thermogenic capacity and gut microbiota in mice fed a high-fat, high-sucrose (HFSD) diet.

Methods: Mice were fed with an HFSD with or without CoA-naringenin or CoA-fisetin for 3 months.

View Article and Find Full Text PDF

Oxidative stress is a crucial factor contributing to ovarian follicular atresia and an imbalance in ovarian energy metabolism in poultry, leading to decreased laying performance in aging hens. This study aimed to investigate the effects of a natural flavonoid, fisetin, on laying performance, ovarian redox status, and energy metabolism in laying chickens. The results showed that dietary fisetin supplementation improved egg production and eggshell quality in aging laying chickens, reduced follicular atresia rate, promoted ovarian cell proliferation, elevated serum estrogen and progesterone levels, restored ovarian antioxidant capacity, and improved energy metabolism.

View Article and Find Full Text PDF

Background: Periodontitis (PD) is a common chronic inflammatory oral disease that severely affects patients' quality of life. Fisetin has been shown to possess antioxidant and anti-inflammatory properties in various biological systems.

Methods: This study first identified the molecular targets of fisetin for PD through network pharmacology analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!