As one of the representative algorithms of deep learning, a convolutional neural network (CNN) with the advantage of local perception and parameter sharing has been rapidly developed. CNN-based detection technology has been widely used in computer vision, natural language processing, and other fields. Fresh fruit production is an important socioeconomic activity, where CNN-based deep learning detection technology has been successfully applied to its important links. To the best of our knowledge, this review is the first on the whole production process of fresh fruit. We first introduced the network architecture and implementation principle of CNN and described the training process of a CNN-based deep learning model in detail. A large number of articles were investigated, which have made breakthroughs in response to challenges using CNN-based deep learning detection technology in important links of fresh fruit production including fruit flower detection, fruit detection, fruit harvesting, and fruit grading. Object detection based on CNN deep learning was elaborated from data acquisition to model training, and different detection methods based on CNN deep learning were compared in each link of the fresh fruit production. The investigation results of this review show that improved CNN deep learning models can give full play to detection potential by combining with the characteristics of each link of fruit production. The investigation results also imply that CNN-based detection may penetrate the challenges created by environmental issues, new area exploration, and multiple task execution of fresh fruit production in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149381PMC
http://dx.doi.org/10.3389/fpls.2022.868745DOI Listing

Publication Analysis

Top Keywords

deep learning
28
fresh fruit
24
fruit production
24
detection technology
12
cnn-based deep
12
cnn deep
12
fruit
11
detection
10
convolutional neural
8
detection methods
8

Similar Publications

In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights.

View Article and Find Full Text PDF

FP-YOLOv8: Surface Defect Detection Algorithm for Brake Pipe Ends Based on Improved YOLOv8n.

Sensors (Basel)

December 2024

School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450000, China.

To address the limitations of existing deep learning-based algorithms in detecting surface defects on brake pipe ends, a novel lightweight detection algorithm, FP-YOLOv8, is proposed. This algorithm is developed based on the YOLOv8n framework with the aim of improving accuracy and model lightweight design. First, the C2f_GhostV2 module has been designed to replace the original C2f module.

View Article and Find Full Text PDF

Multi-modal systems extract information about the environment using specialized sensors that are optimized based on the wavelength of the phenomenology and material interactions. To maximize the entropy, complementary systems operating in regions of non-overlapping wavelengths are optimal. VIS-IR (Visible-Infrared) systems have been at the forefront of multi-modal fusion research and are used extensively to represent information in all-day all-weather applications.

View Article and Find Full Text PDF

Aiming at the severe occlusion problem and the tiny-scale object problem in the multi-fitting detection task, the Scene Knowledge Integrating Network (SKIN), including the scene filter module (SFM) and scene structure information module (SSIM) is proposed. Firstly, the particularity of the scene in the multi-fitting detection task is analyzed. Hence, the aggregation of the fittings is defined as the scene according to the professional knowledge of the power field and the habit of the operators in identifying the fittings.

View Article and Find Full Text PDF

Grapevines ( L.) are one of the most economically relevant crops worldwide, yet they are highly vulnerable to various diseases, causing substantial economic losses for winegrowers. This systematic review evaluates the application of remote sensing and proximal tools for vineyard disease detection, addressing current capabilities, gaps, and future directions in sensor-based field monitoring of grapevine diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!