pathogenesis of plants is initiated with signal reception and culminates with transforming the genomic DNA of its host. The histidine sensor kinase VirA receives and reacts to discrete signaling molecules for the full induction of the genes necessary for this process. Though many of the components of this process have been identified, the precise mechanism of how VirA coordinates the response to host signals, namely phenols and sugars, is unknown. Recent advances of molecular modeling have allowed us to test structure/function predictions and contextualize previous experiments with VirA. In particular, the deep mind software AlphaFold has generated a structural model for the entire protein, allowing us to construct a model that addresses the mechanism of VirA signal reception. Here, we deepen our analysis of the region of VirA that is critical for phenol reception, model and probe potential phenol-binding sites of VirA, and refine its mechanism to strengthen our understanding of signal perception.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149312PMC
http://dx.doi.org/10.3389/fmicb.2022.898785DOI Listing

Publication Analysis

Top Keywords

sensor kinase
8
signal reception
8
mechanism vira
8
vira
7
mechanistic analysis
4
analysis vira
4
vira sensor
4
kinase structural
4
structural models
4
models pathogenesis
4

Similar Publications

Receptor kinase LecRK-I.9 regulates cell wall remodelling during lateral root formation in Arabidopsis.

J Exp Bot

December 2024

Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, F-31320, Auzeville-Tolosane, France.

Assembling and remodelling the cell wall is essential for plant development. Cell wall dynamics is controlled by cell wall proteins, polysaccharide biosynthesis, and a variety of sensor and receptor systems. LecRK-I.

View Article and Find Full Text PDF

RcsF-independent mechanisms of signaling within the Rcs phosphorelay.

PLoS Genet

December 2024

Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America.

The Rcs (regulator of capsule synthesis) phosphorelay is a conserved cell envelope stress response mechanism in enterobacteria. It responds to perturbations at the cell surface and the peptidoglycan layer from a variety of sources, including antimicrobial peptides, beta-lactams, and changes in osmolarity. RcsF, an outer membrane lipoprotein, is the sensor for this pathway and activates the phosphorelay by interacting with an inner membrane protein IgaA.

View Article and Find Full Text PDF

TAT-1, a phosphatidylserine flippase, affects molting and regulates membrane trafficking in the epidermis of C. elegans.

Genetics

December 2024

Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming 82071.

Membrane trafficking is a conserved process required for import, export, movement, and distribution of proteins and other macromolecules within cells. The Caenorhabditis elegans NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking and are required for the completion of molting. Using a genetic approach we identified reduction-of-function mutations in tat-1 that suppress nekl-associated molting defects.

View Article and Find Full Text PDF

Electroacupuncture ameliorates inflammatory pain through CB2 receptor-dependent activation of the AMPK signaling pathway.

Chin Med

December 2024

Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Diseases of Hubei Province and National Education Ministry, Huazhong University of Science and Technology, Wuhan, 430030, China.

Background: Chronic inflammatory pain is a pervasive condition, and electroacupuncture (EA) is an effective treatment, but its mechanisms are not fully understood. AMP-activated protein kinase (AMPK), a key energy sensor, is involved in pain relief and EA's effects. EA may work by increasing endocannabinoids, upregulating CB2 receptors (CB2R), and stimulating β-endorphin (β-END).

View Article and Find Full Text PDF

Stress contingent changes in Hog1 pathway architecture and regulation in Candida albicans.

PLoS Pathog

December 2024

Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.

The Hog1 stress-activated protein kinase (SAPK) is a key mediator of stress resistance and virulence in Candida albicans. Hog1 activation via phosphorylation of the canonical TGY motif is mediated by the Pbs2 MAPKK, which itself is activated by the Ssk2 MAPKKK. Although this three-tiered SAPK signalling module is well characterised, it is unclear how Hog1 activation is regulated in response to different stresses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!