Sonication of gallium or gallium-based liquid metals in an aqueous solution of vinyl monomers leads to rapid free radical polymerization (FRP), without the need for conventional molecular initiators. Under ambient conditions, a passivating native oxide separates these metals from solution and renders the metal effectively inert. However, sonication generates liquid metal nanoparticles (LMNPs) of ∼100 nm diameter and thereby increases the surface area of the metal. The exposed metal initiates polymerization, which proceeds via a FRP mechanism and yields high molecular weight polymers that can form physical gels. Spin trapping EPR reveals the generation of free radicals. Time-of-flight secondary ion mass spectrometry measurements confirm direct polymer bonding to gallium, verifying the formation of surface-anchored polymer grafts. The grafted polymers can modify the interfacial properties, that is, the preference of the metal particles to disperse in aqueous versus organic phases. The polymer can also be degrafted and isolated from the particles using strong acid or base. The concept of physically disrupting passivated metal surfaces offers new routes for surface-initiated polymerization and has implications for surface modification, reduction reactions, and fabrication of mechanically responsive materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.9b00783 | DOI Listing |
Fish Physiol Biochem
January 2025
Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia.
High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China.
Soft and stretchable strain sensors are crucial for applications in human-machine interfaces, flexible robotics, and electronic skin. Among these, capacitive strain sensors are widely used and studied; however, they face challenges due to material and structural constraints, such as low baseline capacitance and susceptibility to external interference, which result in low signal-to-noise ratios and poor stability. To address these issues, we propose a U-shaped electrode flexible strain sensor based on liquid metal elastomer (LME).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China.
Electronic skin is widely employed in multiple applications such as health monitoring, robot tactile perception, and bionic prosthetics. In this study, we fabricated millimeter-scale electronic skin featuring compact sensing units using the Boston Micro Fabrication S130 (a high-precision additive manufacturing device) and the template removal method. We used a gallium-based liquid metal and achieved an inner channel diameter of 0.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
Phosphate invert glasses (PIGs) have been attracting attention as materials for bone repair. PIGs have a high flexibility in chemical composition because they are composed of orthophosphate and pyrophosphate and can easily incorporate various ions in their glass networks. In our previous work, incorporation of niobium (Nb) into melt-quench-derived PIGs was effective in terms of controlling their ion release, and Nb ions promoted the activity of osteoblast-like cells.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
α-Hydroxy ketones are a crucial class of organic compounds prevalent in natural products and pharmaceutical molecules. The CO-promoted hydration of propargylic alcohols is an efficient method for the synthesis of α-hydroxy ketones. Herein, an ionic liquid (IL) was designed to catalyze this reaction individually under atmospheric CO pressure, volatile organic solvents, and additives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!