Electrochemical activation of thiocarbonylthio reversible addition-fragmentation chain transfer (RAFT) agents (S=C(Z)S-R) is explored as a potential method for initiating RAFT polymerization under mild conditions without producing initiator-derived byproducts. Herein we apply cyclic voltammetry to establish a predominant reduction mechanism, where electrochemical reduction is coupled to an irreversible first-order chemical reaction. Structure-dependent trends in cyclic voltammograms (CVs), and comparison to absorption spectra, clarify the role of R- and Z-groups in determining reduction processes. The major reduction peak moves to more cathodic potentials in the series dithiobenzoates > trithiocarbonates > heteroaromatic dithiocarbamates > xanthates ∼ -alkyl--aryldithiocarbamates, due to the Z-group influence on thiocarbonyl bond reactivity. More active (electron-withdrawing, radical stabilizing) R-groups shift the reduction peak anodically, in part due to their influence on the rate of the coupled chemical reaction. Analysis of CVs across a range of scan rates revealed that kinetic control over the reduction mechanism is influenced by both the charge transfer rate and chemical reaction rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.9b00598 | DOI Listing |
Top Curr Chem (Cham)
January 2025
School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
BCP (bicyclo[1.1.1]pentane) is an ideal saturated carbon bioisostere, instead of the traditional benzene group, which has been extensively developed.
View Article and Find Full Text PDFJ Mol Model
January 2025
Shanxi Jiangyang Chemical Limited Company, Taiyuan, 030041, Shanxi, China.
Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
A prevalent challenge in particulate photocatalytic water splitting lies in the fact that while numerous photocatalysts exhibit outstanding hydrogen evolution reaction (HER) activity in organic sacrificial reagents, their performance diminishes markedly in a Z-scheme water splitting system using electronic mediators. This underlying reason remains undefined, posing a long-standing issue in photocatalytic water splitting. Herein, we unveiled that the primary reason for the decreased HER activity in electronic mediators is due to the strong adsorption of shuttle ions on cocatalyst surfaces, which inhibits the initial proton reduction and results in a severe backward reaction of the oxidized shuttle ions.
View Article and Find Full Text PDFOrg Lett
January 2025
Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan.
1,1-Difluoroallenes underwent regioselective [2 + 2] and [3 + 2] cycloadditions with aldehydes using Au(I) catalysts. An AuCl catalyst enabled an α,β-selective [2 + 2] cycloaddition of 1,1-difluoroallenes, yielding ()-3-alkylidene-2,2-difluorooxetanes. Conversely, an AuCl(IPr)-AgSbF catalyst facilitated an α,γ-selective [3 + 2] cycloaddition, followed by dehydrofluorination to produce aromatized 2-fluorofurans.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
Electrochemical nitrogen conversion for ammonia (NH) synthesis, driven by renewable electricity, offers a sustainable alternative to the traditional Haber-Bosch process. However, this conversion process remains limited by a low Faradaic efficiency (FE) and NH yield. Although transition metals have been widely studied as catalysts for NH synthesis through effective electron donation/back-donation mechanisms, there are challenges in electrochemical environments, including competitive hydrogen evolution reaction (HER) and catalyst stability issues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!