Polyorthoesters are generally considered to be highly biocompatible, surface-eroding materials. However, sensitive intermediates and poor mechanical performance have largely prevented their widespread application to date. Herein, a simple and versatile method to synthesize orthoester- and acetal-based polymers is presented. Using 2-methylene-1,3-dioxe-5-pene as a stable bifunctional monomer, sequential highly selective "click" reactions led initially to the formation of orthoesters (OE) in a Markovnikov alcohol addition or acetals via anti-Markovnikov thiol-ene addition. Subsequent photoinitiated thiol addition onto the remaining endocyclic and backbone alkene functionalities lead to thioether formation to produce a class of poly(orthoester-thioether)s or poly(acetal-thioether)s via a step-growth polymerization. While all obtained polymers were found to possess a weight-average molecular weight of above 10 kg·mol, the application of an OE monomer with additional double bond functionality led to a cross-linked polymer network which displayed surface-erosion behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.9b00463DOI Listing

Publication Analysis

Top Keywords

synthesis rapidly
4
rapidly surface
4
surface eroding
4
eroding polyorthoesters
4
polyorthoesters polyacetals
4
polyacetals thiol-ene
4
thiol-ene click
4
click chemistry
4
chemistry polyorthoesters
4
polyorthoesters generally
4

Similar Publications

The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.

View Article and Find Full Text PDF

Facile Ester-based Phase Change Materials Synthesis for Enhanced Energy Storage Toward Battery Thermal Management.

Adv Sci (Weinh)

January 2025

School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, NO. 1 DAXUE ROAD, Xuzhou, Jiangsu, 221116, China.

With the increasing demand for thermal management, phase change materials (PCMs) have garnered widespread attention due to their unique advantages in energy storage and temperature regulation. However, traditional PCMs present challenges in modification, with commonly used physical methods facing stability and compatibility issues. This study introduces a simple and effective chemical method by synthesizing seven ester-based PCMs through chemical reactions involving lauric acid (LA) and seven different alcohols.

View Article and Find Full Text PDF

Neurosteroids play an important role as endogenous neuromodulators that are locally produced in the central nervous system and rapidly change the excitability of neurons and the activation of microglial cells and astrocytes. Here we review the mechanisms of synthesis, metabolism, and actions of neurosteroids in the central nervous system. Neurosteroids are able to play a variety of roles in the central nervous system under physiological conditions by binding to membrane ion channels and receptors such as gamma-aminobutyric acid type A receptors, Nmethyl- D-aspartate receptors, L- and T-type calcium channels, and sigma-1 receptors.

View Article and Find Full Text PDF

Ocean surface temperatures and the frequency and intensity of marine heatwaves are increasing worldwide. Understanding how marine organisms respond and adapt to heat pulses and the rapidly changing climate is crucial for predicting responses of valued species and ecosystems to global warming. Here, we carried out an in situ experiment to investigate sublethal responses to heat spikes of a functionally important intertidal bivalve, the venerid clam Austrovenus stutchburyi.

View Article and Find Full Text PDF

Cryoprotective agent (CPA) toxicity is the most limiting factor impeding cryopreservation of critically needed tissues and organs for transplantation and medical research. This limitation is in part due to the challenge of rapidly screening compounds to identify candidate molecules that are highly membrane permeable and non-toxic at high concentrations. Such a combination would facilitate rapid CPA permeation throughout the sample, enabling ice-free cryopreservation with minimal toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!