Multicomponent interpenetrating network hydrogels possessing enhanced mechanical stiffness compared to their individual components were prepared via physical mixing of diblock copolypeptides that assemble by either hydrophobic association or polyion complexation in aqueous media. Optical microscopy analysis of fluorescent-probe-labeled multicomponent hydrogels revealed that the diblock copolypeptide components rapidly and spontaneously self-sort to form distinct hydrogel networks that interpenetrate at micron length scales. These materials represent a class of microscale compartmentalized hydrogels composed of degradable, cell-compatible components, which possess rapid self-healing properties and independently tunable domains for downstream applications in biology and additive manufacturing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.9b00669DOI Listing

Publication Analysis

Top Keywords

microscale compartmentalized
8
self-sorting microscale
4
compartmentalized block
4
block copolypeptide
4
hydrogels
4
copolypeptide hydrogels
4
hydrogels multicomponent
4
multicomponent interpenetrating
4
interpenetrating network
4
network hydrogels
4

Similar Publications

Long-range organization of intestinal 2D-crypts using exogenous Wnt3a micropatterning.

Nat Commun

January 2025

Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Intestinal epithelial cells are segregated into proliferative crypts and differentiated regions. This organization relies on specific signals, including Wnt3a, which regulates cell proliferation within crypts, and Eph/Ephrin, which dictates cell positioning along the crypt-villus axis. However, studying how the spatial distributions of these signals influences crypt-villus organization is challenging both in vitro and in vivo.

View Article and Find Full Text PDF

Compartmentalized localization of perinuclear proteins within germ granules in C. elegans.

Dev Cell

December 2024

Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China. Electronic address:

Germ granules, or nuage, are RNA-rich condensates that are often docked on the cytoplasmic surface of germline nuclei. C. elegans perinuclear germ granules are composed of multiple subcompartments, including P granules, Mutator foci, Z granules, SIMR foci, P -bodies, and E granules.

View Article and Find Full Text PDF

Microgels show advantages over bulk hydrogels due to convenient control over microgel size and composition, and the ability to use microgels to modularly construct larger hierarchical scaffold hydrogel materials. Here, supramolecular chemistry is used to formulate supramolecular polymer, dynamic microgels solely held together by non-covalent interactions. Four-fold hydrogen bonding ureido-pyrimidinone (UPy) monomers with different functionalities are applied to precisely tune microgel properties in a modular way, via variations in monomer concentration, bifunctional crosslinker ratio, and the incorporation of supramolecular dyes and peptides.

View Article and Find Full Text PDF

Germ granule compartments coordinate specialized small RNA production.

Nat Commun

July 2024

Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.

Germ granules are biomolecular condensates present in most animal germ cells. One function of germ granules is to help maintain germ cell totipotency by organizing mRNA regulatory machinery, including small RNA-based gene regulatory pathways. The C.

View Article and Find Full Text PDF

Neuronal cultures have been a reference experimental model for several decades. However, 3D cell arrangement, spatial constraints on neurite outgrowth, and realistic synaptic connectivity are missing. The latter limits the study of structure and function in the context of compartmentalization and diminishes the significance of cultures in neuroscience.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!