Phagocyte-Inspired Smart Microcapsules.

ACS Macro Lett

Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain.

Published: April 2019

Phagocytes protect the organism by ingesting harmful foreign particles and cells. We use mesoscale computer simulations to design a phagocyte-inspired active microcapsule that is capable of selectively capturing nanoparticles dispersed in solvent. Our fully synthetic microdevice is actuated by a temperature-sensitive microgel enclosed inside a perforated spherical shell. The shell pores are decorated with a copolymer brush that regulates the transport of solutes into the capsule interior. When exposed to an external stimulus, the microgel swells, expanding through the shell pores to make contact with the nanoparticle-rich solution surrounding the capsule. Upon removal of the external stimulus, the gel retracts back into the shell, bringing along with it captured nanoparticles. We probe how periodic application of the stimulus combined with nanoparticle-microgel adhesion enable selectivity and enhance capturing efficiency of our nature-inspired microdevice.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.8b00992DOI Listing

Publication Analysis

Top Keywords

shell pores
8
external stimulus
8
phagocyte-inspired smart
4
smart microcapsules
4
microcapsules phagocytes
4
phagocytes protect
4
protect organism
4
organism ingesting
4
ingesting harmful
4
harmful foreign
4

Similar Publications

In this study, we present an ultrasensitive and specific multiplexed detection method for SARS-CoV-2 and influenza (Flu) utilizing CRISPR/Cas13a technology combined with a hydrogel-encapsulated photonic crystal (PhC) barcode integrated with hybridization chain reaction (HCR). The barcodes, characterized by core-shell structures, are fabricated through partial replication of periodically ordered hexagonally close-packed silicon dioxide beads. Consequently, the opal hydrogel shell of these barcodes features abundant interconnected pores that provide a substantial surface area for probe immobilization.

View Article and Find Full Text PDF

Scaling Behavior and Conductance Mechanisms of Ion Transport in Atomically Thin Graphene Nano/Subnanopores.

Nano Lett

January 2025

The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China.

Ion transport through atomically thin nano/subnanopores, such as those in monolayer graphene, presents challenges to traditional ion conduction models, primarily due to extreme confinement effects and hydration interactions. Under these conditions, existing models fail to account for conductance behaviors at the nano- and subnanometer scales. In this study, we perform a combined experimental and theoretical investigation of ion transport in monolayer graphene nano/subnanopores across varying salt concentrations.

View Article and Find Full Text PDF

Integration of ordered porous materials for targeted three-component gas separation.

Nat Commun

January 2025

Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.

Separation of multi-component mixtures in an energy-efficient manner has important practical impact in chemical industry but is highly challenging. Especially, targeted simultaneous removal of multiple impurities to purify the desired product in one-step separation process is an extremely difficult task. We introduced a pore integration strategy of modularizing ordered pore structures with specific functions for on-demand assembly to deal with complex multi-component separation systems, which are unattainable by each individual pore.

View Article and Find Full Text PDF

(Mtb) is the causative agent of tuberculosis, the world's deadliest infectious disease. Mtb uses a variety of mechanisms to evade the human host's defenses and survive intracellularly. Mtb's oxidative stress response enables Mtb to survive within activated macrophages, an environment with reactive oxygen species and low pH.

View Article and Find Full Text PDF

Unveiling the crucial role of iron oxide transformation in simultaneous immobilization of nanoplastics and organic matter.

Sci Total Environ

January 2025

State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.

Nanoplastics (NPs) have been found in natural environments. However, the sequestration of NPs and natural organic matter (NOM) coupled with the Fe(III) hydrolysis and subsequent iron oxides transformation remains unclear. Here, we investigated the behaviors of NPs during the dynamic transformation process of iron oxides in the presence of humic acids (HA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!