Multidimensional profiling indicates the shifts and functionality of wheat-origin microbiota during high-temperature Daqu incubation.

Food Res Int

Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. Electronic address:

Published: June 2022

Wheat-origin microbiota is a critical factor in the assembly of the microbial community during high-temperature Daqu incubation. However, the succession and functional mechanisms of these microbial communities in Daqu are still unclear. This study investigated the shifts in microbiota diversity from the wheat to the end of incubation by the third generation Pacific Biosciences (PacBio) single-molecule, real-time (SMRT) sequencing technology. Results indicated that Staphylococcus, Pantoea, Alternaria, and Mycosphaerella were the dominant genera of wheat-origin microbiota while Bacillus and Thermoascus were the most predominant bacterial and fungal genera of Daqu microbiota, respectively. Metabolite detection revealed that volatile organic compounds (VOCs) changed obviously in different incubation stages and the 7th day to the 15th day of incubation was the critical period for the formation of VOCs. The content of non-VOCs, especially sugars, increased steeply in the first four days of incubation. The network analysis between microbes and metabolites showed that Thermoactinomyces and Staphylococcus had opposite correlations with most non-VOCs. Alternaria and Mycosphaerella had strong positive correlations with fructose. As key functional fungal genera in wheat-origin microbiota, Mycosphaerella, Aspergillus, and Alternaria participated in multiple metabolic pathways (gluconeogenesis I, sucrose degradation III, pentose phosphate pathway, 5-aminoimidazole ribonucleotide biosynthesis I, methyl ketone biosynthesis, and GDP-mannose biosynthesis) at the early stage of incubation, which played an important role in the formation of flavors and succession of microbiota. This work highlighted the shifts and functionality of wheat-origin microbiota in Daqu incubation, which can be a guideline to stabilize Daqu quality by wheat-origin microbiota control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2022.111191DOI Listing

Publication Analysis

Top Keywords

wheat-origin microbiota
24
daqu incubation
12
microbiota
9
shifts functionality
8
functionality wheat-origin
8
high-temperature daqu
8
incubation
8
alternaria mycosphaerella
8
genera wheat-origin
8
fungal genera
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!