Increasing efforts are being made on controlled photopolymerization methodologies; however, the previous polymerization systems need additional photoactive initiators or catalysts. The controlled synthesis of the hyperbranched polypeptide is still challenging, and developing a photopolymerization method to prepare a hyperbranched polypeptide is urgent for constructing biodegradable polymers and biomaterials. Without addition of any initiator/catalyst, we combine the inimer (initiator + monomer) ring-opening polymerization (ROP) and photocaged chemistry to prepare hyperbranched and linear polypeptides. The photocaged Nε-(-nitrobenzyloxycarbonyl)-l-lysine--carboxyanhydride possesses intrinsic photosensitivity and will be transformed into an activated AB* inimer-type α-amino acid -carboxyanhydride (NCA) containing a primary ε-amine, which further triggers ROP to produce linear and/or hyperbranched polypeptides in one pot and at room temperature. The microstructure and topology of the resulting polypeptide were clarified by means of mass spectroscopy and various NMR techniques including H NMR, H, H-COSY, and quantitative C NMR. By tuning the UV irradiation time or intensity, this methodology can produce a linear polypeptide with a high of 109 kDa and/or (hyper)branched counterparts with tunable 's of 1.4-73.5 kDa and degree of branching of 0.09-0.60.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.7b00167 | DOI Listing |
Nanomedicine
January 2025
College of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, Jilin, China. Electronic address:
Exploiting the unique physiological and biochemical characteristics of the tumor microenvironment, the development of a polypeptide nanogel capable of responding to these specific properties holds great promise as an effective antitumor strategy. In this study, we synthesized a glutathione-responsive (GSH-responsive) methylated poly (ethylene glycol)-poly (phenylalanine)-poly (cystine) block copolymer (mPPC) through one-step ring-opening polymerization. Shikonin (SHK) was encapsulated within nanogel, designated as mPPC/SHK.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
Biobased poly(ethylene furanoate) (PEF)/poly(ε-caprolactone) (PCL) block copolymers have been synthesized using ring opening polymerization (ROP) of ε-caprolactone (ε-CL) in the presence of PEF in different mass ratios. An increase in intrinsic viscosity is observed for the block copolymers with higher ε-CL content due to the extension of their macromolecular chain. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) was employed to understand the composition and structure of the produced block copolymers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
South China University of Technology, Faculty of Materials Science and Engineering, 381 Wushan Road, 510641, Guangzhou, CHINA.
Amide groups occur extensively in natural and synthetic polymers cultivating their vital roles in biological and industrial worlds. We report here an efficient and controlled pathway to amide-functionalized polyethers through ring-opening polymerization (ROP) of commercially available ethyl glycidate followed by amidation of the pendant ester groups. Transesterification is inhibited during the ROP by use of a two-component organocatalyst.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
The present work focuses on the synthesis and characterization of biobased lignin-poly(lactic) acid (PLA) composites. Organosolv lignin, extracted from beechwood, was used as a filler at 0.5, 1.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
Entropy-Driven Ring-Opening Polymerisation represents an attractive mechanism to produce high-performance polymeric materials as it can be performed using neat, low-viscosity precursors and without the production of by-products or release of volatiles. Macrocyclic oligomers (MCOs) of polyether ketone ketone (PEKK) were synthesised and investigated as an method of forming this high-performance thermoplastic. Cyclic oligomers were successfully synthesised by pseudo-high dilution methods, and the reaction conditions were optimised through careful addition of starting materials and carbonate base selection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!