In this study, we synthesize charge-varied hyperbranched polymers (HBPs) and demonstrate surface charge as a key parameter directing their association with specific human blood cell types. Using fresh human blood, we investigate the association of 5 nm HBPs with six white blood cell populations in their natural milieu by flow cytometry. While most cell types associate with cationic HBPs at 4 °C, at 37 °C phagocytic cells display similar (monocyte, dendritic cell) or greater (granulocyte) association with anionic HBPs compared to cationic HBPs. Neutral HBPs display remarkable stealth properties. Notably, these charge-association patterns are not solely defined by the plasma protein corona and are material and/or size dependent. As HBPs progress toward clinical use as imaging and drug delivery agents, the ability to engineer HBPs with defined biological properties is increasingly important. This knowledge can be used in the rational design of HBPs for more effective delivery to desired cell targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.7b00229 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!