Thiourea dioxide, a green and inexpensive compound used at industrial scale, was employed as reducing agent for the controlled polymerization of a wide range of monomer families, namely, acrylates (methyl acrylate, 2-hydroxyethyl acrylate, butyl acrylate, methacrylates (2-(dimethylamino)ethyl methacrylate, 2-aminoethyl methacrylate hydrochloride, and methyl methacrylate), styrene, acrylonitrile, and vinyl chloride (nonactivated monomer) by ATRP. Mechanistic studies confirmed that the polymerizations are ruled by the activators regenerated by electron transfer (ARGET) mechanism. It is worth noting that vinyl chloride has never been polymerized by ARGET ATRP. The system proved to be very versatile and robust, working in organic solvents, organic/water mixtures, and aqueous medium at near room temperature with low metal catalyst concentration. Chain extension experiments confirmed the high chain-end functionality of the polymers, allowing the preparation of several well-defined block copolymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.9b00139 | DOI Listing |
J Am Chem Soc
January 2025
Institute of Catalysis, Zhejiang University, Hangzhou 310027, China.
Selective coupling of C platform molecules to C olefins is a cornerstone for establishing a sustainable chemical industry based on nonpetroleum sources. Vinyl chloride (CHCl), one of the top commodity petrochemicals, is commercially produced from coal- or oil-derived C hydrocarbon (acetylene and ethylene) feedstocks with a high carbon footprint. Here, we report a C-based route for vinyl chloride synthesis via the selective oxidative coupling of methyl chloride.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland.
To clean or not to clean? The solution to this dilemma is related to understanding the plasticiser migration which has a few practical implications for the state of museum artefacts made of plasticised poly(vinyl chloride) - PVC and objects stored in their vicinity. The consequences of this process encompass aesthetic changes due to the presence of exudates and dust deposition, an increase in air pollution and the development of mechanical stresses. Therefore, this paper discusses the plasticiser migration in PVC to provide evidence and support the development of recommendations and guidelines for conservators, collection managers and heritage scientists.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, Ontario N2L 3G1, Canada.
Research has shown microplastic particles to be pervasive pollutants in the natural environment, but labor-intensive sample preparation, data acquisition, and analysis protocols continue to be necessary to navigate their diverse chemistry. Machine learning (ML) classification models have shown promise for identifying microplastics from their Raman spectra, but all attempts to date have focused on the lower energy "fingerprint" region of the spectrum. We explore strategies to improve ML classification models based on the -nearest-neighbor algorithm by including other regions of the Raman spectra.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
The potential of advanced energy storage devices lies in using solid biodegradable polymer electrolytes. This study is focused on a solid blend polymer electrolyte (SBPE) film based on chitosan (CS)-poly(vinyl alcohol) (PVA) blend matrix doped with magnesium chloride (MgCl) salt via solution casting. The interaction of MgCl was verified via X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy.
View Article and Find Full Text PDFThe objective of the study was to examine the mechanical and electrostatic properties of poly(vinyl chloride) intended for use in protective footwear. The poly(vinyl chloride) material was made with graphite (flake side dimensions 5 and 10 µm) additive in weight concentration variants from 0.5 to 10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!