Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Above their cloud point, aqueous solutions of the thermoresponsive polymer poly(-isopropylacrylamide) (PNIPAM) form large mesoglobules. We have carried out very small-angle neutron scattering (VSANS with = 0.21-2.3 × 10 Å) and Raman spectroscopy experiments on a 3 wt % PNIPAM solution in DO at atmospheric and elevated pressures (up to 113 MPa). Raman spectroscopy reveals that, at high pressure, the polymer is less dehydrated upon crossing the cloud point. VSANS shows that the mesoglobules are significantly larger and contain more DO than at atmospheric pressure. We conclude that the size of the mesoglobules and thus their growth process are closely related to the hydration state of PNIPAM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.7b00563 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!