Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, there has been a push to understand how molecular topology alters the nonequilibrium dynamics of polymer systems. In this paper, we probe how knotted polymers evolve in planar extensional fields using Brownian dynamics simulations and single-molecule experiments. In the first part of the study, we quantify the extension versus strain-rate curves of polymers and find that knots shift these curves to larger strain-rates. These trends can be quantitatively explained by Rouse-like scaling theories. In the second half of the study, we examine the consequences of knot untying on the time-dependent conformations of polymers in these external fields. We find that knot untying creates significant, transient changes in chain extension. If the topology is complex, the chain undergoes a wide range of time-dependent conformations since knot untying proceeds through many different stages. We provide examples of such untying trajectories over time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.7b00600 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!