The relevance of LPdX precatalyst activation on the Suzuki-Miyaura reaction course was investigated in the case of catalyst-transfer polymerizations. A catalytic study, backed up by theoretical calculations, allowed to ascertain the coexistence of a neutral and an anionic mechanistic pathways in the precatalyst activation, in which the bulky BuP external ligand plays a crucial role. The fine-tuning of the catalytic conditions can steer the activation step toward the anionic pathway, leading to the full control over the polymerization course. While providing insights and perspectives into the catalyst-transfer polymerizations, these results uncover unexplored scenarios for the pre-transmetalation events of Suzuki-Miyaura reactions contributing to its full understanding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.7b00696 | DOI Listing |
Molecules
January 2025
Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
Mixed-metal nickel-iron, NiFe materials draw attention as affordable earth-abundant electrocatalysts for the oxygen evolution reaction (OER). Here, nickel and mixed-metal nickel-iron metal-organic framework (MOF) composites with the carbon materials ketjenblack (KB) or carbon nanotubes (CNT) were synthesized in situ in a one-pot solvothermal reaction. As a direct comparison to these in situ synthesized composites, the neat MOFs were postsynthetically mixed by grinding with KB or CNT, to generate physical mixture composites.
View Article and Find Full Text PDFInorg Chem
January 2025
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, No. 8 Shangsan Road, Fuzhou 350007, China.
The electrocatalytic 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) toward 2,5-furandicarboxylic acid (FDCA) has been considered a promising approach for the substitution of the energy-consuming and hazardous oxygen evolution reaction and for the valorization of renewable biomass. However, it is limited by the susceptibility of HMF to the oxidative environment and requires efficient electrocatalysts. Herein, a NiMo complex (NiMo-N) is provided as the precatalyst for the HMFOR, exhibiting favorable performances with a current density of 450 mA·cm achieved at an anodic potential of 1.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Chemistry and Chemical Engineering, Yan'an University Yan'an 716000 P.R. China
Pyrazoles are an important class of five-membered nitrogen heterocyclic compounds that have been widely used in agriculture and medicine. Exploring their synthesis methods under mild conditions has always been a hot research topic. Herein, a new strategy was developed to enhance the activity of a zirconium metal centre for the synthesis of -acylpyrazole derivatives using CpZrCl as a pre-catalyst.
View Article and Find Full Text PDFACS Omega
January 2025
Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand.
The effectiveness of metallocene catalysts in the cationic ring-opening polymerization (cationic ROP) of ε-caprolactone (CL) is influenced by the choice of metallocene/borate systems, particularly their bulkiness. Recent research examines this effect on the initiation and propagation stages of cationic ROP. We conducted a density functional theory study on the precatalyst activation of cationic CL ROP by zirconocene/borate catalysts, where four models of zirconocene precatalysts (CpZrMe (), (MeCp)CpZrMe (), (MeCp)ZrMe (), and IndZrMe ()) were combined with boron cocatalysts B(CF) and [X][B(CF) ] (X = PhC or PhMeNH).
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China; School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China. Electronic address:
Most transition metal-based electrocatalysts, when used for the oxygen evolution reaction (OER), undergo significant restructuring under alkaline conditions, forming localized oxides/hydroxides (MOOH), which act as the real active centers, activating adjacent metal sites and creating new active sites that enhance electrocatalytic behavior. Nevertheless, inducing rapid and in-depth self-reconstruction of catalyst surfaces remains a huge challenge. Herein, this work achieves rapid and in-depth self-reconstruction by doping fluorine into the lattice of transition metal oxides (MO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!