AI Article Synopsis

  • The surface of a blend of polystyrene types shows a depletion of both high-energy end groups and functionalized segments.
  • The study uses SL-MALDI-ToF-MS, a high-tech method that can detect entire polymer chains on the surface without needing any labels.
  • Interestingly, the depletion occurs despite the functional group representing less than 0.5 wt% of the total polymer chain, highlighting the unique behavior of these blends.

Article Abstract

The surface of a blend of 6 kDa polystyrene and 6 kDa polystyrene functionalized with hydroxymethyl ends not only is depleted of the higher energy end groups but also is depleted of any segments belonging to the functionalized chains. This is demonstrated using the emerging technique of surface layer matrix-assisted laser desorption ionization time-of-flight mass spectrometry (SL-MALDI-ToF-MS), which detects entire chains that have any repeat unit at the outer surface, and requires no labeling. Detecting entire chains provides information about the relationship of chain functionalization to surface segregation behavior of entire chains. That the surface is depleted of interior segments of functionalized chains as well as of the ends is remarkable, since the functionality at the single chain end involves less than 0.5 wt % of the functionalized polymer chain.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.8b00394DOI Listing

Publication Analysis

Top Keywords

entire chains
12
polymer chains
8
chains surface
8
kda polystyrene
8
functionalized chains
8
chains
7
surface
6
subtle group
4
group functionalization
4
functionalization polymer
4

Similar Publications

Engineering an Ionic Aggregation-Induced Luminescence-Labeled Fluorescence Lateral Flow Immunoassay for C-Reactive Protein in Human Plasma.

Anal Chem

December 2024

Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.

The surge of lateral flow immunoassays (LFAs) stimulates researchers to explore the novel vibrant aggregation-induced emission luminogen (AIEgen)-doped nanoparticles to improve the accuracy and reliability of LFAs. However, the loading amount of AIEgens currently used for the LFA in microspheres is limited due to their symmetrical large conjugated skeleton structure, which significantly reduces the fluorescence brightness of the signal reporter in the LFA. Herein, an ionic AIEgens with a donor-acceptor type was developed as the signal reporter of the LFA for C-reactive protein (CRP).

View Article and Find Full Text PDF

Complete BmFib-L knockout reveals its indispensable role in silk fiber formation.

Int J Biol Macromol

December 2024

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing, China. Electronic address:

Silkworm (Bombyx mori), belonging to the order Lepidoptera, is an important model insect for economic and scientific research. The capacity of the silkworm to secrete robust silk renders it a valuable economic resource, while its biological characteristics offer insights into a number of scientific disciplines. Despite the extensive research conducted to elucidate the mechanisms of silk secretion, many aspects remain unclear.

View Article and Find Full Text PDF

In this study, we present a comprehensive analysis of the motion of a tagged monomer within a Gaussian semiflexible polymer model. We carefully derived the generalized Langevin equation (GLE) that governs the motion of a tagged central monomer. This derivation involves integrating out all the other degrees of freedom within the polymer chain, thereby yielding an effective description of the viscoelastic motion of the tagged monomer.

View Article and Find Full Text PDF

The Y chromosome contains a set of genes with testis-specific expression that are responsible for the development of testes and spermatogenesis, and it is the most important target in the search for genetic causes of male infertility. Most of these genes are located in the "azoospermia factor" AZF locus (regions AZFa, AZFb, and AZFc) on the long arm of the Y chromosome. Microdeletions of the Y chromosome, leading to the removal of the entire AZF locus as well as one or more regions (complete deletions), are one of the leading causes of spermatogenesis impairment and infertility.

View Article and Find Full Text PDF

Progress in understanding the underlying mechanisms of muscular dystrophies is hindered by the lack of pathophysiologically relevant in vitro models. Here, an entirely scaffold-free anchored cell sheet engineering platform is used to create patient-specific three-dimensional (3D) skeletal muscle in vitro models. This approach effectively replicates mature muscle phenotypes and tissue- and disease-specific extracellular matric (ECM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!