Perfluoroalkyl substances (PFASs) contamination of aquatic system has attracted widespread attention in recent years. From both plant and microbial perspectives, the ecological risk of CWs by comparing PFASs with different chain lengths have not been fully understood. In this study, the influences of perfluorobutyric acid (PFBA) and perfluorooctanoic acid (PFOA) as typical of short- and long-chains on the ecological effect of CWs have been specifically studied. The results showed that plants produced oxidative stress response and the activities of superoxide dismutase (SOD) and peroxidase (POD) in leaves were stimulated by 17.23-28.13% and 10.49-14.17% upon 10 mg/L PFBA and PFOA exposure. Under the high level of PFBA and PFOA stress, the chlorophyll content was reduced by 15.20-39.40% and lipid peroxidation was observed in leaves with the accumulation of malondialdehyde (MDA) at 1.20-1.22 times of the control. Dehydrogenase (DHA) exhibited the most sensitivity in the presence of PFBA and PFOA with an inhibition ratio of over 90%. The biotoxicity of PFOA was higher than that of PFBA in terms of the inhibition degree of several substrate enzymes. The information of Illumina Miseq sequencing indicated that the diversity and structure of microbial community in CWs were significantly altered by PFBA and PFOA addition and led to an enrichment of more PFASs-tolerant bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.128863 | DOI Listing |
Sci Total Environ
January 2025
LAR5 Laboratory, Department of Engineering, University of Perugia, Perugia, Italy. Electronic address:
Background: PFAS contamination is a global issue, affecting various food sources, especially animal-based products like eggs and dairy.
Objective: Collect scientific evidence of the presence of PFAS in diverse food and edible resources along with the related risks to human health, pursuing the following objectives: determination of the level of terrestrial food chain contamination; determination of the related human health risk.
Data Source: Scopus, PubMed, and Web of Science databases.
J Expo Sci Environ Epidemiol
January 2025
Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Background: Exposure to per- and polyfluoroalkyl substances (PFAS) has been linked with various cancers. Assessment of PFAS in drinking water and cancers can help inform biomonitoring and prevention efforts.
Objective: To screen for incident cancer (2016-2021) and assess associations with PFAS contamination in drinking water in the US.
Front Vet Sci
December 2024
Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy.
Background: Recently, environmental pollution has become a significant concern for human, animal, and environmental health, fitting within the "One Health" framework. Among the various environmental contaminants, per- and polyfluoroalkyl substances (PFASs) have gathered substantial attention due to their persistence, bioaccumulation, and adverse health effects. This study aimed to compare the levels of 12 PFASs in the fur, liver, and muscle of wild roe deer to evaluate the feasibility of using fur as a non-invasive biomonitoring matrix.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
Microplastics (MPs) and per- and polyfluoroalkyl substances (PFASs) are ubiquitous contaminants in environments, yet their co-occurrence and interactions remain insufficiently understood. In this study, we confirmed the concurrent presence of MPs and PFASs and their distinct distribution patterns in a wastewater treatment plant (WWTP) through a comprehensive sampling and analysis effort. Significant correlations ( < 0.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China. Electronic address:
In the present study, we investigated the effects of a representative of the per- and polyfluoroalkyl substance (PFAS) chemical group, namely perfluorooctanoic acid (PFOA), and its alternatives (perfluorobutanoic acid [PFBA] and the hexafluoropropylene oxide dimer acid [GenX]) on bone homeostasis, a process that mainly depends on osteoblast (OB) and osteoclast (OC) activities at the cellular level. C3H10T1/2 cells and bone marrow macrophages (BMMs) were respectively induced into OBs and OCs, and treated with PFOA, PFBA, and GenX at doses of 0.25, 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!