Stormwater ponds are widely used for controlling runoff quality through the sedimentation of particles and associated pollutants. Their maintenance requires regular removal and disposal of accumulated material. This necessitates an assessment of material hazardousness, including potential hazard due to its contamination by metals. Here we analyze 32 stormwater pond sediment samples from 17 facilities using several chemical analysis methods (total extraction, sequential extraction, diffusive gradients in thin-films DGT, and pore water extraction) in order to consider the complementarity and comparability of the different approaches. No clear relationship was found between analyses that have the potential to measure similar metal fractions (DGT and either fraction 1 of the sequential extraction (adsorbed and exchangeable metals and carbonates) or pore water concentrations). Loss on ignition (LOI) had a significant positive correlation with an indicator of the environmental risk developed in this paper (∑ranks) that incorporates different metals, speciations, and environmental endpoints. Large variations in metal levels were observed between ponds. As clustering was limited between the different analyses, a comprehensive analysis of different parameters is still needed to fully understand metal speciation and bioavailability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9550750 | PMC |
http://dx.doi.org/10.1007/s11356-022-20694-0 | DOI Listing |
J Environ Manage
January 2025
Department of Soil, Water, and Ecosystem Sciences, University of Florida | IFAS, Gainesville, FL 32611, USA.
Stormwater ponds (SWPs) are an increasingly common management tool for flood control and water quality protection in urban areas. They are designed to buffer the impacts to downstream environments caused by altered hydrologic, chemical, biological, and ecological processes in developed watersheds. While small in size, they can have disproportionately large impacts on watersheds because they store, transform, and release inputs of carbon (C) and nutrients, mainly nitrogen (N) and phosphorus (P).
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Biological and Agricultural Engineering, North Carolina State University, Campus Box 7625, Raleigh, NC, 27695, USA.
Water Sci Technol
November 2024
Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
Stormwater is recognised as a vector for microplastics (MPs), including tyre wear particles (TWPs) from land-based sources to receiving waterbodies. Before reaching the waterbodies, the stormwater may be treated. In this study, sediments from six treatment facilities (five retention ponds and a subsurface sedimentation tank) were analysed to understand MP occurrence, concentrations, sizes, polymer types and distribution between inlet and outlet.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2024
Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France.
The intensification of agriculture has promoted the simplification and specialization of agroecosystems, resulting in negative impacts such as decreasing landscape heterogeneity and increasing use of plant protection products (PPP), with the acceleration of PPP transfers to environmental compartments and loss in biodiversity. In this context, the present work reviews the various levers for action promoting the prevention and management of these transfers in the environment and the available modelling tools. Two main categories of levers were identified: (1) better control of the application, including the reduction of doses and of PPP dispersion during application thanks to appropriate equipment and settings, PPP formulations and consideration of meteorological conditions; (2) reduction of post-application transfers at plot scales (soil cover, low tillage, organic matter management, remediation etc.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Biology, University of Waterloo, 200 University Avenue W., Waterloo, Ontario N2L 3G1, Canada. Electronic address:
Aquatic habitats in urban environments are exposed to complex contaminant mixtures that may harm aquatic biota. The impact of contaminant transfer from contaminated biofilm through aquatic food webs is still understudied, as is the current state of knowledge on dietary exposure of urban contaminants to biota residing in stormwater ponds. Our overall objective was to characterize urban pesticide accumulation in a common aquatic food source (biofilm) in stormwater ponds and to investigate the potential toxicity of that food source by testing the responses of two freshwater macroinvertebrates to experimental exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!