A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tracing geochemical sources and health risk assessment of uranium in groundwater of arid zone of India. | LitMetric

Water quality degradation and metal contamination in groundwater are serious concerns in an arid region with scanty water resources. This study aimed at evaluating the source of uranium (U) and potential health risk assessment in groundwater of the arid region of western Rajasthan and northern Gujarat. The probable source of vanadium (V) and fluorine (F) was also identified. U and trace metal concentration, along with physicochemical characteristics were determined for 265 groundwater samples collected from groundwater of duricrusts and palaeochannels of western Rajasthan and northern Gujarat. The U concentration ranged between 0.6 and 260 μg L with a mean value of 24 μg L, and 30% of samples surpassed the World Health Organization's limit for U (30 μg L). Speciation results suggested that dissolution of primary U mineral, carnotite [K(UO)(VO)·3HO] governs the enrichment. Water-rock interaction and evaporation are found the major hydrogeochemical processes controlling U mineralization. Groundwater zones having high U concentrations are characterized by Na-Cl hydrogeochemical facies and high total dissolved solids. It is inferred from geochemical modelling and principal component analysis that silicate weathering, bicarbonate complexation, carnotite dissolution, and ion exchange are principal factors controlling major solute ion chemistry. The annual ingestion doses of U for all the age groups are found to be safe and below the permissible limit in all samples. The health risk assessment with trace elements manifested high carcinogenic risks for children.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160070PMC
http://dx.doi.org/10.1038/s41598-022-05770-2DOI Listing

Publication Analysis

Top Keywords

health risk
12
risk assessment
12
groundwater arid
8
arid region
8
western rajasthan
8
rajasthan northern
8
northern gujarat
8
groundwater
6
tracing geochemical
4
geochemical sources
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!