Comparing machine learning techniques for predicting glassy dynamics.

J Chem Phys

Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France.

Published: May 2022

In the quest to understand how structure and dynamics are connected in glasses, a number of machine learning based methods have been developed that predict dynamics in supercooled liquids. These methods include both increasingly complex machine learning techniques and increasingly sophisticated descriptors used to describe the environment around particles. In many cases, both the chosen machine learning technique and choice of structural descriptors are varied simultaneously, making it hard to quantitatively compare the performance of different machine learning approaches. Here, we use three different machine learning algorithms-linear regression, neural networks, and graph neural networks-to predict the dynamic propensity of a glassy binary hard-sphere mixture using as structural input a recursive set of order parameters recently introduced by Boattini et al. [Phys. Rev. Lett. 127, 088007 (2021)]. As we show, when these advanced descriptors are used, all three methods predict the dynamics with nearly equal accuracy. However, the linear regression is orders of magnitude faster to train, making it by far the method of choice.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0088581DOI Listing

Publication Analysis

Top Keywords

machine learning
24
learning techniques
8
predict dynamics
8
learning
6
machine
5
comparing machine
4
techniques predicting
4
predicting glassy
4
dynamics
4
glassy dynamics
4

Similar Publications

Who is coming in? Evaluation of physician performance within multi-physician emergency departments.

Am J Emerg Med

January 2025

Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.

Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.

Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.

View Article and Find Full Text PDF

Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.

View Article and Find Full Text PDF

Prediction of Thermodynamic Properties of C-Based Fullerenols Using Machine Learning.

J Chem Theory Comput

January 2025

Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.

Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.

View Article and Find Full Text PDF

This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!