To investigate photoinduced phenomena in various materials and molecules, ultrashort pulsed x-ray and electron sources with high brightness and high repetition rates are required. The x-ray and electron's typical and de Broglie wavelengths are shorter than lattice constants of materials and molecules. Therefore, photoinduced structural dynamics on the femtosecond to picosecond timescales can be directly observed in a diffraction manner by using these pulses. This research created a tabletop ultrashort pulsed electron diffraction setup that used a femtosecond laser and electron pulse compression cavity that was directly synchronized to the microwave master oscillator (∼3 GHz). A compressed electron pulse with a 1 kHz repetition rate contained 228 000 electrons. The electron pulse duration was estimated to be less than 100 fs at the sample position by using photoinduced immediate lattice changes in an ultrathin silicon film (50 nm). The newly developed time-resolved electron diffraction setup has a pulse duration that is comparable to femtosecond laser pulse widths (35-100 fs). The pulse duration, in particular, fits within the timescale of photoinduced phenomena in quantum materials. Our developed ultrafast time-resolved electron diffraction setup with a sub-100 fs temporal resolution would be a powerful tool in material science with a combination of optical pump-probe, time-resolved photoemission spectroscopic, and pulsed x-ray measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0086008DOI Listing

Publication Analysis

Top Keywords

electron diffraction
16
time-resolved electron
12
diffraction setup
12
electron pulse
12
pulse duration
12
electron
9
photoinduced phenomena
8
materials molecules
8
ultrashort pulsed
8
pulsed x-ray
8

Similar Publications

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

The world is now facing a water scarcity crisis due to waste, pollution, and uneven distribution of freshwater resources, which are limited. Thus, the creation of innovative, economical, and effective methods for purifying water is crucial. Here, the photo-assisted degradation of methylene blue (MB) dye under visible light and UV was achieved by using RGO photocatalyst loaded with ZnCuFeO in three different loaded 10%, 20%, and 30% called MRGO 10, MRGO 20, and MRGO 30.

View Article and Find Full Text PDF

Sc-doped GeTe thin films prepared by radio-frequency magnetron sputtering.

Sci Rep

January 2025

Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic.

Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have GeTe, GeTeSc, GeTeSc, GeTeSc and GeTeSc chemical composition.

View Article and Find Full Text PDF

Nanomedical applications have increased significantly. This work aimed to fabricate and characterize cobalt oxide nanoparticles (CoOnps) synthesized biologically via aqueous Alhagi maurorum extract and evaluate their cytotoxic and antimicrobial impacts. Green-synthesized CoOnps were prepared and analyzed using UV-Vis spectrophotometer UV-vis, Scanning electron microscopy (SEM), Transmission electron microscopy TEM, Energy dispersive X-ray analysis EDAX, Fourier transform infrared, FTIR, and X-ray diffraction (XRD).

View Article and Find Full Text PDF

The removal of toxic nitrophenols from the industrial wastewater is urgently needed from health, environmental and economic aspects. The present study deals with the synthesis of crosslinked vinyl polymer Poly(divinylbenzene) (poly(DVB)) through free radical polymerization technique using AIBN as initiator and acetonitrile as solvent. The prepared polymer was used as a support for silver nanoparticles via chemical reduction of silver nitrate on the polymer network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!