In situ visible and near-infrared (Vis-NIR) spectroscopy has proven to be a reliable tool for determining soil organic carbon (SOC) content with a small loss of precision as compared to laboratory measurements. The loss of precision is a result of disturbing external environmental factors that disrupt spectral measurements. For example, roughness, changes in weather conditions, humidity, temperature, human factors, spectral noise and especially soil water. It has been assumed that, in situ predictive capability could be improved if some of these factors are either minimized or eliminated during the in situ measurement. For this study, the prediction of SOC was carried out under two different in situ measurement conditions; less favourable environmental conditions (with disturbances) and more favourable site-specific conditions (disturbance-reduced conditions). The primary goal is to determine whether the estimate of SOC can be improved under more favourable site-specific conditions, as well as the impact of pre-treatment algorithms on both less and more favourable disturbed conditions. The study employed a large range of pretreatment algorithms and their combinations. Three separate multivariate models were used to predict SOC, namely Cubist, support vector machine regression (SVMR), and partial least squares regression (PLSR). The result clearly shows that reduced disturbing factors (i.e., drier and unploughed soil as well as noise reduction) result in an improvement of SOC prediction with in situ Vis-NIR spectroscopy. The best overall result was achieved with SVMR (R = 0.72, RMSEPcv = 0.21, RPIQ = 2.34). Although the combination of pre-treatment algorithms resulted in an improvement, overall, these pre-treatment algorithms could not compensate for the factors affecting the measured spectra with disturbance. Though the obtained result is promising, further study is still needed to disentangle the impacts and interactions of various disturbing factors for different soil types.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.156304 | DOI Listing |
PLoS One
January 2025
Clinic for Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany.
Duchenne gait, characterized by an ipsilateral trunk lean towards the affected stance limb, compensates for weak hip abductor muscles, notably the gluteus medius (GM). This study aims to investigate how electromyographic (EMG) cluster analysis of GM contributes to a better understanding of Duchenne gait in patients with cerebral palsy (CP). We analyzed retrospective gait data from 845 patients with CP and 65 typically developed individuals.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
January 2025
Department of Pathology, Renmin Hospital of Wuhan University, Wuhan430060, China.
To investigate the prognostic value of deep learning-based automated quantification of tumor-stroma ratio (TSR) in patients undergoing neoadjuvant therapy (NAT) for breast cancer. Specimens were collected from 209 breast cancer patients who received NAT at Renmin Hospital of Wuhan University from October 2019 to June 2023. TSR levels in pre-NAT biopsy specimens were automatically computed using a deep learning algorithm and categorized into low stroma (TSR≤30%), intermediate stroma (TSR 30% to ≤60%), and high stroma (TSR>60%) groups.
View Article and Find Full Text PDFRadiat Oncol
December 2024
Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands.
Background And Purpose: Timely identification of local failure after stereotactic radiotherapy for brain metastases allows for treatment modifications, potentially improving outcomes. While previous studies showed that adding radiomics or Deep Learning (DL) features to clinical features increased Local Control (LC) prediction accuracy, their combined potential to predict LC remains unexplored. We examined whether a model using a combination of radiomics, DL and clinical features achieves better accuracy than models using only a subset of these features.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
Precision medicine in less-defined subtype diffuse large B-cell lymphoma (DLBCL) remains a challenge due to the heterogeneous nature of the disease. Programmed cell death (PCD) pathways are crucial in the advancement of lymphoma and serve as significant prognostic markers for individuals afflicted with lymphoid cancers. To identify robust prognostic biomarkers that can guide personalized management for less-defined subtype DLBCL patients, we integrated multi-omics data derived from 339 standard R-CHOP-treated patients diagnosed with less-defined subtype DLBCL from three independent cohorts.
View Article and Find Full Text PDFJpn J Radiol
December 2024
Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
Objectives: This study evaluates the effectiveness of machine learning (ML) models that incorporate clinical and 2-deoxy-2-[F]fluoro-D-glucose ([F]-FDG)-positron emission tomography (PET)-radiomic features for predicting outcomes in gallbladder cancer patients.
Materials And Methods: The study analyzed 52 gallbladder cancer patients who underwent pre-treatment [F]-FDG-PET/CT scans between January 2011 and December 2021. Twenty-seven patients were assigned to the training cohort between January 2011 and January 2018, and the data randomly split into training (70%) and validation (30%) sets.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!