It was already clinically apparent 150 years ago that bacterial therapy could alleviate diseases. Recently, a burgeoning number of researchers have been using bacterial regimens filled with microbial therapeutic leads to diagnose and treat a wide range of disorders and diseases, including cancers, inflammatory diseases, metabolic disorders and viral infections. Some bacteria that were designed to have low toxicity and high efficiency in drug delivery have been used to treat diseases successfully, especially in tumor therapy in animal models or clinical trials, thanks to the progress of genetic engineering and synthetic bioengineering. Therefore, genetically engineered bacteria can serve as efficient drug delivery vehicles, carrying nucleic acids or genetic circuits that encode and regulate therapeutic payloads. In this review, we summarize the development and applications of this approach. Strategies for genetically modifying strains are described in detail, along with their objectives. We also describe some controlled strategies for drug delivery and release using these modified strains as carriers. Furthermore, we discuss treatment methods for various types of diseases using engineered bacteria. Tumors are discussed as the most representative example, and other diseases are also briefly described. Finally, we discuss the challenges and prospects of drug delivery systems based on these bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.addr.2022.114363 | DOI Listing |
Background: The hyperphosphorylation, mislocalization, and aggregation of the microtubule associated protein Tau (MAPT) is a driving force in tauopathies, a group of progressive, neurodegenerative disorders. These pathogenic intracellular aggregates, known as neurofibrillary tangles (NFTs), are a hallmark in several diseases such as frontotemporal dementia, progressive supranuclear palsy, and Alzheimer's Disease. While anti-Tau immunotherapies emphasize the clearance of extracellular Tau aggregates, they do not address the intracellular accumulation of NFTs.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Université de Lille, Lille, Hauts-de-France, France.
Background: Tau proteins aggregate in a number of neurodegenerative disorders known as tauopathies. Various studies have highlighted the role of microtubule-binding domains in the intracellular aggregation of Tau protein.
Method: Using a library of synthetic VHHs humanized in collaboration with Hybrigenics, we have developed a number of anti-tau VHHs.
Alzheimers Dement
December 2024
Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, NSW, Australia.
Background: Alzheimer's Disease (AD) poses a substantial global health burden, necessitating innovative therapeutic strategies. This study investigates the neuroprotective potential of a chrysin-loaded Nanostructured Lipid Carrier (NLC) drug delivery system in AD management. Employing the high-pressure homogenization method, chrysin-loaded NLCs were meticulously formulated to optimize drug delivery efficiency.
View Article and Find Full Text PDFBackground: Previously, we demonstrated therapeutic benefits following intraperitoneal delivery of the TGR5 agonist HY209 in 5xFAD, a transgenic mouse model of Alzheimer's Disease (AD). Given the desirability of a more acceptable administration route for prolonged AD treatment, we assessed the efficacy of HY209 via oral delivery. This study aims to elucidate the therapeutic potential of NuCerin, an oral formulation of HY209, in the aforementioned AD model, while simultaneously identifying potential blood biomarkers indicative of NuCerin's therapeutic action.
View Article and Find Full Text PDFPreclinical Alzheimer's prevention trials require a multi-year commitment from diverse, cognitively unimpaired individuals willing to receive biomarker results of confirmed Alzheimer's pathology and possible ApoE4 status. Participants learn new terms such as ARIA, edema and microhemorrhage and undergo numerous MRI scans for safety monitoring. They take quarterly composite Alzheimer's assessments that are anxiety-provoking and highlight weaknesses which may have been unrecognized in daily life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!