Endothelial and erythropoietic lineages arise from a common developmental progenitor. Etv2 is a master transcriptional regulator required for the development of both lineages. However, the mechanisms through which Etv2 initiates the gene-regulatory networks (GRNs) for endothelial and erythropoietic specification and how the two GRNs diverge downstream of Etv2 remain incompletely understood. Here, by analyzing a hypomorphic Etv2 mutant, we demonstrate different threshold requirements for initiation of the downstream GRNs for endothelial and erythropoietic development. We show that Etv2 functions directly in a coherent feedforward transcriptional network for vascular endothelial development, and a low level of Etv2 expression is sufficient to induce and sustain the endothelial GRN. In contrast, Etv2 induces the erythropoietic GRN indirectly via activation of Tal1, which requires a significantly higher threshold of Etv2 to initiate and sustain erythropoietic development. These results provide important mechanistic insight into the divergence of the endothelial and erythropoietic lineages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203129 | PMC |
http://dx.doi.org/10.1016/j.celrep.2022.110881 | DOI Listing |
Health Sci Rep
October 2024
Department of Medical Laboratory Science, Faculty of Health Science and Technology Ebonyi State University Abakaliki Nigeria.
J Extracell Vesicles
July 2024
Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.
Haematopoiesis dysregulation with the presence of immature myeloid and erythroid immunosuppressive cells are key characteristics of the immune escape phase of tumour development. Here, the role of in vitro generated B16F10 tumour cell-derived extracellular vesicles (tEVs) as indirect cellular communicators, participating in tumour-induced dysregulation of haematopoiesis, was explored. The isolated tEVs displayed features of small EVs with a size range of 100-200 nm, expressed the common EV markers CD63, CD9, and Alix, and had a spherical shape with a lipid bilayer membrane.
View Article and Find Full Text PDFDiabetes Obes Metab
May 2024
Department of Cardiovascular Medicine, Saga University, Saga, Japan.
Aims: To analyse the changes in erythropoietic and estimated fluid volume parameters after the initiation of ipragliflozin, a sodium-glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD).
Methods: This was a post-hoc analysis of the PROCEED trial, which evaluated the effect of 24-week ipragliflozin treatment on endothelial dysfunction in patients with T2DM and CKD. We evaluated the changes in erythropoietic and estimated fluid volume parameters from baseline to 24 weeks post-treatment in 53 patients who received ipragliflozin (ipragliflozin group) and 55 patients with T2DM and CKD without sodium-glucose co-transporter 2 inhibitors (control group), a full analysis set of the PROCEED trial.
Exp Hematol
November 2023
Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI; Rogel Cancer Center, University of Michigan, Ann Arbor, MI; Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI. Electronic address:
Dietary consumption serves as the primary source of iron uptake, and erythropoiesis acts as a major regulator of systemic iron demand. In addition to intestinal iron absorption, macrophages play a crucial role in recycling iron from senescent red blood cells. The kidneys are responsible for the production of erythropoietin (Epo), which stimulates erythropoiesis, whereas the liver plays a central role in producing the iron-regulatory hormone hepcidin.
View Article and Find Full Text PDFInt J Mol Sci
July 2023
Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
Cerebral hypoperfusion is associated with enhanced cognitive decline and increased risk of neuropsychiatric disorders. Erythropoietin (EPO) is a neurotrophic factor known to improve cognitive function in preclinical and clinical studies of neurodegenerative and psychiatric disorders. However, the clinical application of EPO is limited due to its erythropoietic activity that can adversely elevate hematocrit in non-anemic populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!