Active APPL1 sequestration by Plasmodium favors liver-stage development.

Cell Rep

Instituto de Medicina Molecular- João Lobo Antunes (iMM-JLA), Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal. Electronic address:

Published: May 2022

Intracellular pathogens manipulate host cells to survive and thrive. Cellular sensing and signaling pathways are among the key host machineries deregulated to favor infection. In this study, we show that liver-stage Plasmodium parasites compete with the host to sequester a host endosomal-adaptor protein (APPL1) known to regulate signaling in response to endocytosis. The enrichment of APPL1 at the parasitophorous vacuole membrane (PVM) involves an atypical Plasmodium Rab5 isoform (Rab5b). Depletion of host APPL1 alters neither the infection nor parasite development; however, upon overexpression of a GTPase-deficient host Rab5 mutant (hRab5_Q79L), the parasites are smaller and their PVM is stripped of APPL1. Infection with the GTPase-deficient Plasmodium berghei Rab5b mutant (PbRab5b_Q91L) in this case rescues the PVM APPL1 signal and parasite size. In summary, we observe a robust correlation between the level of APPL1 retention at the PVM and parasite size during exoerythrocytic development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2022.110886DOI Listing

Publication Analysis

Top Keywords

parasite size
8
host
6
appl1
6
active appl1
4
appl1 sequestration
4
plasmodium
4
sequestration plasmodium
4
plasmodium favors
4
favors liver-stage
4
liver-stage development
4

Similar Publications

The invasion of cane toads (Rhinella marina) across tropical Australia has resulted in the rapid evolution of traits that enable higher rates of dispersal, and that adapt toads to hot dry climates. In anurans, a larger heart facilitates both locomotor activity and desiccation tolerance. Heart size is also often affected, either directly or indirectly, by parasite infections.

View Article and Find Full Text PDF

Variations in extracellular vesicle shedding of Cystoisospora suis stages (Apicomplexa: Coccidia).

Int J Parasitol

January 2025

Institute of Parasitology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1 A-1210 Vienna, Austria.

Cystoisospora suis, a porcine enteral parasite of the order Coccidia, is characterized by a complex life cycle, with asexual and sexual development in the epithelium of the host gut and an environmental phase as an oocyst. All developmental stages vary greatly in their morphology and function, and therefore excrete different bioactive molecules for intercellular communication. Due to their complex development, we hypothesized that the extracellular vesicles (EVs) cargo is highly dependent on the life cycle stages from which they are released.

View Article and Find Full Text PDF

Background: Neospora caninum (Apicomplexa, Sarcocystidae) is a protozoan parasite regarded as a major cause of reproductive failure in cattle. Swine are susceptible to N. caninum infection; however, the role of these animals in the circulation, maintenance, and transmission of N.

View Article and Find Full Text PDF

Construction and biological function of gene knockout strain.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha 410013.

Objectives: Toxoplasmosis is a zoonotic parasitic disease caused by (), which can lead to complications such as encephalitis and ocular toxoplasmosis. The disease becomes more severe when the host's immune system is compromised. Rhoptry proteins are major virulence factors that enable to invade host cells.

View Article and Find Full Text PDF

In vitro culture and confocal microscopy study of Maritrema gratiosum Nicoll, 1907 (Digenea): From metacercaria to ovigerous adult.

Parasitol Res

January 2025

Institute of Aquaculture, University of Stirling, 5F.-2, No. 196, Sec. 2, Xinglong Rd., Wenshan Dist., Taipei City, 116096, Taiwan (R.O.C.).

This study set out to characterise the in vitro development, including musculature, of the microphallid parasite of the barnacle Semibalanus balanoides (Linnaeus, 1767), Maritrema gratiosum Nicoll, 1907 collected in Scotland. An in vitro culture model was developed to obtain ovigerous adults of M. gratiosum and their morphology was observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!